Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'K-Space' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'K-Space' found in 6 terms [] and 56 definitions []
previous     36 - 40 (of 62)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13]
Searchterm 'K-Space' was also found in the following services: 
spacer
News  (1)  Resources  (2)  Forum  (10)  
 
Echo Planar Imaging Factor
 
(EPI Factor) The imaging speed in Echo Planar Imaging (EPI) depends on many factors. Single shot EPI should provide images within 100 ms or less. Because of this limitations, a multi shot EPI approach is in most cases preferred. The parameter 'EPI Factor' is used to specify the number of k-space profiles collected per excitation.
The EPI factor 64 means a measurement time 64 times faster than a normal gradient echo sequence. See also Echo Planar Imaging.
spacer
 
Further Reading:
  Basics:
Echo Planar Imaging at 4 Tesla With Minimum Acoustic Noise(.pdf)
   by www.bnl.gov    
Echo-planar imaging (EPI) and functional MRI(.pdf)
1998   by www.uib.no    
MRI Resources 
Mobile MRI Rental - Used and Refurbished MRI Equipment - Musculoskeletal and Joint MRI - Research Labs - Health - Safety pool
 
Fourier TransformationMRI Resource Directory:
 - Process Analysis -
 
(FT) The Fourier transformation is a mathematical procedure to separate out the frequency components of a signal from its amplitudes as a function of time, or the inverse Fourier transformation (IFT) calculates the time domain from the frequency domain. The FT is used to generate the spectrum from the free induction decay or spin echo in the pulse MR technique and is essential to most MR imaging techniques. The Fourier transformation can be generalized to multiple dimensions, e.g. to relate an image to its corresponding k-space representation, or to include chemical shift information in some chemical shift imaging techniques. Fourier transformation analysis allows spatial information to be reconstructed from the raw data.
spacer

• View the DATABASE results for 'Fourier Transformation' (39).Open this link in a new window

 
Further Reading:
  Basics:
Fourier Transform Imaging of Spin Vortex Eigenmodes
Friday, 13 August 2004   by www.physik.uni-regensburg.de    
MR Image Reconstruction from Raw Data
   by dukemil.egr.duke.edu    
The Scientist and Engineer's Guide to Digital Signal Processing
MRI Resources 
Developers - Sequences - NMR - MRI Accidents - Jobs - Spectroscopy pool
 
Interleaved Image Acquisition
 
The joint collection of data for two or more separate images such that a subset of k-space samples for the second image is acquired immediately after that for the first image. This method avoids misregistration between the two images and allows for accurate subtraction of the two images.
spacer
Searchterm 'K-Space' was also found in the following services: 
spacer
News  (1)  Resources  (2)  Forum  (10)  
 
MAGNETOM 7T
 
www.healthcare.siemens.com/magnetic-resonance-imaging/7t-mri-scanner/magnetom-7t From Siemens Medical Systems;
The MAGNETOM 7T is designed as an open research platform. 7T MRI provides anatomical detail at the submillimiter scale, enhanced contrast mechanisms, outstanding spectroscopy performance, ultra-high resolution functional imaging (fMRI), multinuclear whole-body MRI and functional information.
This ultra high field (UHF) MRI device is a research system and not cleared, approved or licensed in any jurisdiction for patient examinations.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Compact
7 Tesla
High-performance, ultra high field coils available. Integration and support for coil developments.
CHANNELS (min. / max. configuration)
32, optional 8 channels TX array
Chemical shift imaging, single voxel spectroscopy, multinuclear imaging optional
IMAGING TECHNIQUES
iPAT, mSENSE and GRAPPA (image, k-space), noncontrast angiography, plaque imaging, radial motion compensation
FOV
40 x 40 x 30 cm³ less than 8% nonlinearity
BORE DIAMETER
or W x H
60 cm
TABLE CAPACITY
200 kg
MAGNET WEIGHT (gantry included)
35017 kg
DIMENSION H*W*D (gantry included)
320 x 240 x 317,5 cm
5-GAUSS FRINGE FIELD
7.9 m / 5.6 m
CRYOGEN USE
Zero boil off rate
COOLING SYSTEM
Water
up to 200 T/m/s
MAX. AMPLITUDE
up to 70 mT/m
Up to 3rd order shim coils, user configurable B0 shim ? B0 maps and ROI definition
POWER REQUIREMENTS
2000 Volts, 650A
spacer
 
Further Reading:
  Basics:
MAGNETOM 7T Product Brochure
   by www.healthcare.siemens.com    
  News & More:
Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease
Wednesday, 5 March 2014   by www.sciencedaily.com    
Feasibility of Using Ultra-High Field (7 T) MRI for Clinical Surgical Targeting
Thursday, 17 May 2012   by www.plosone.org    
Ultrahigh-Field MRI May Detect Additional Pathology in EAE
Sunday, 20 October 2013   by www.msdiscovery.org    
MRI Resources 
Examinations - Services and Supplies - MR Guided Interventions - Hospitals - DICOM - Cochlear Implant
 
MAGNETOM Aera
 
www.healthcare.siemens.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-aera/ From Siemens Medical Systems;
Received FDA clearance in 2010.
The MAGNETOM Aera is a patient friendly, comfortable 1.5 Tesla MRI system with advanced radio frequency chain.
The system is equipped with the Tim 4G and Dot system (Total imaging matrix + Day optimizing throughput), to enhance both productivity and image quality.
Tim 4G technology provides improved SNR. The standard system configuration of 48 radio frequency channels and 204 coil elements creates an imaging matrix that allows maximum use of coil elements at full field of view. Dot provides improved image consistency through new features like auto align, auto FoV and automatic bolus detection.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Open bore
Head, spine, torso/ body coil, neurovascular, cardiac, neck, shoulder, knee, wrist, foot//ankle and multi-purpose flex coils. Peripheral vascular, breast, shoulder. Up to 60% more SNR with Tim 4G.
CHANNELS (min. / max. configuration)
48, 64
IMAGING TECHNIQUES
iPAT, mSENSE and GRAPPA (image, k-space), noncontrast angiography, plaque imaging, radial motion compensation, Dixon, improved workflow with Dot, Caipirinha - single digit breath-holds for 3-D body imaging.
MINIMUM TR
3-D GRE: 0.95 (256 matrix)
MINIMUM TE
3-D GRE: 0.22 (256 matrix), Ultra-short TE
FOV
0.5 - 50
BORE DIAMETER
or W x H
At isocenter: L-R 70 cm, A-P (with table) 55 cm
TABLE CAPACITY
250 kg
MAGNET WEIGHT (gantry included)
3121 kg
DIMENSION H*W*D (gantry included)
145 x 231 x 219 cm
5-GAUSS FRINGE FIELD
2.5 m / 4.0 m
CRYOGEN USE
Zero boil off rate, approx. 10 years
COOLING SYSTEM
Water
up to 200 T/m/s
MAX. AMPLITUDE
33 or 45 mT/m
3 linear with 20 coils, 5 nonlinear 2nd-order
POWER REQUIREMENTS
380 / 400 / 420 / 440 / 460 / 480 V, 3-phase + ground; 85 kVA
spacer
MRI Resources 
Lung Imaging - Contrast Enhanced MRI - Corporations - Breast MRI - Crystallography - Spine MRI
 
previous      36 - 40 (of 62)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]