Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'pulse sequences' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'pulse sequences' found in 1 term [] and 97 definitions []
1 - 5 (of 98)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
Searchterm 'pulse sequences' was also found in the following services: 
spacer
News  (1)  Resources  (5)  Forum  (8)  
 
Motion Compensation Pulse SequencesInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Pulse sequences, designed to be insensitive to flow, e.g. at every even echo, a spin echo sequence is not flow sensitive. Velocity compensation is achieved by using gradients, which are either symmetrical around a 180° pulse and switched on twice as is the case for motion compensated spin echo pulse sequences, or two antisymmetrical gradient lobes without 180° pulse, which is the way to produce a velocity compensated gradient echo pulse sequence.
The signal of the second echo (and all other even echoes) is independent of the velocity of the object. Thus, velocity-based motion effects stemming from the entire voxel or from spins within a voxel (intravoxel incoherent motion) are suppressed with such pulse sequences.
If higher order motion is relevant, as it may be in turbulent jets across valves, acceleration and jerk effects can also be compensated for by the use of appropriate combinations of gradient- and radio frequency pulses.
With the increasingly stronger gradients, echo times in MR systems can be shortened to the point at which effects other than velocity effects hardly ever become relevant.
spacer
 
• Share the entry 'Motion Compensation Pulse Sequences':  Facebook  Twitter  LinkedIn  
 
Further Reading:
  News & More:
Patient movement during MRI: Additional points to ponder
Tuesday, 5 January 2016   by www.healthimaging.com    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
MRI Resources 
Bioinformatics - Non-English - Jobs - Image Quality - Jobs pool - Safety pool
 
Flow QuantificationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Quantification relies on inflow effects or on spin phase effects and therefore on quantifying the phase shifts of moving tissues relative to stationary tissues.
With properly designed pulse sequences (see phase contrast sequence) the pixel by pixel phase represents a map of the velocities measured in the imaging plane. Spin phase effect-based flow quantification schemes use pulse sequences specifically designed so that the phase angle in a pixel obtained upon measuring the signal is proportional to the velocity. As the relation of the phase angle to the velocity is defined by the gradient amplitudes and the gradient switch-on times, which are known, velocity can be determined quantitatively on a pixel-by-pixel basis. Once, this velocity is known, the flow in a vessel can be determined by multiplying the pixel area with the pixel velocity. Summing this quantity for all pixels inside a vessel results in a flow volume, which is measured, e.g. in ml/sec.
Flow related enhancement-based flow quantification techniques (entry phenomena) work because spins in a section perpendicular to the vessel of interest are labeled with some radio frequency RF pulse. Positional readout of the tagged spins some time T later will show the distance D they have traveled.
For constant flow, the velocity v is obtained by dividing the distance D by the time T : v = D/T. Variations of this basic principle have been proposed to measure flow, but the standard methods to measure velocity and flow use the spin phase effect.
Cardiac MRI sequences are used to encode images with velocity information. These pulse sequences permit quantification of flow-related physiologic data, such as blood flow in the aorta or pulmonary arteries and the peak velocity across stenotic valves.
spacer

• View the DATABASE results for 'Flow Quantification' (6).Open this link in a new window

MRI Resources 
Functional MRI - Bioinformatics - Colonography - Corporations - Jobs pool - Patient Information
 
Blood Oxygenation Level Dependent ContrastInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Functional MRI -
 
(BOLD) In MRI the changes in blood oxygenation level are visible. Oxyhaemoglobin (the principal haemoglobin in arterial blood) has no substantial magnetic properties, but deoxyhaemoglobin (present in the draining veins after the oxygen has been unloaded in the tissues) is strongly paramagnetic. It can thus serve as an intrinsic paramagnetic contrast agent in appropriately performed brain MRI. The concentration and relaxation properties of deoxyhaemoglobin make it a susceptibility , e.g. T2 relaxation effective contrast agent with little effect on T1 relaxation.
During activation of the brain, the oxygen consumption of the local tissue increase by approximately 5% with that the oxygen tension will decrease. As a consequence, after a short period of time vasodilatation occurs, resulting in a local increase of blood volume and flow by 20 - 40%. The incommensurate change in local blood flow and oxygen extraction increases the local oxygen level.
By using T2 weighted gradient echo EPI sequences, which are highly susceptibility sensitive and fast enough to capture the three-dimensional nature of activated brain areas will show an increase in signal intensity as oxyhaemoglobin is diamagnetic and deoxyhaemoglobin is paramagnetic. Other MR pulse sequences, such as spoiled gradient echo pulse sequences are also used.
As the effects are subtle and of the order of 2% in 1.5 T MR imaging, sophisticated methodology, paradigms and data analysis techniques have to be used to consistently demonstrate the effect.
As the BOLD effect is due to the deoxygenated blood in the draining veins, the spatial localization of the region where there is increased blood flow resulting in decreased oxygen extraction is not as precisely defined as the morphological features in MRI. Rather there is a physiological blurring, and is estimated that the linear dimensions of the physiological spatial resolution of the BOLD phenomenon are around 3 mm at best.
spacer

• View the DATABASE results for 'Blood Oxygenation Level Dependent Contrast' (6).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
  News & More:
A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal
Tuesday, 29 August 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
MRI Technique Used to Identify Future Risk of Binge Drinking
Monday, 6 January 2020   by www.diagnosticimaging.com    
Gold Acupuncture Needle MRI Pain Discovery
Friday, 3 January 2014   by www.healthcmi.com    
MRI method for measuring MS progression validated
Thursday, 19 December 2013   by www.eurekalert.org    
Searchterm 'pulse sequences' was also found in the following services: 
spacer
News  (1)  Resources  (5)  Forum  (8)  
 
Diffusion Weighted ImagingForum -
related threadsMRI Resource Directory:
 - Diffusion Weighted Imaging -
 
(DWI) Magnetic resonance imaging is sensitive to diffusion, because the diffusion of water molecules along a field gradient reduces the MR signal. In areas of lower diffusion the signal loss is less intense and the display from this areas is brighter. The use of a bipolar gradient pulse and suitable pulse sequences permits the acquisition of diffusion weighted images (images in which areas of rapid proton diffusion can be distinguished from areas with slow diffusion).
Based on echo planar imaging, multislice DWI is today a standard for imaging brain infarction. With enhanced gradients, the whole brain can be scanned within seconds. The degree of diffusion weighting correlates with the strength of the diffusion gradients, characterized by the b-value, which is a function of the gradient related parameters: strength, duration, and the period between diffusion gradients.
Certain illnesses show restrictions of diffusion, for example demyelinization and cytotoxic edema. Areas of cerebral infarction have decreased apparent diffusion, which results in increased signal intensity on diffusion weighted MRI scans. DWI has been demonstrated to be more sensitive for the early detection of stroke than standard pulse sequences and is closely related to temperature mapping.
DWIBS is a new diffusion weighted imaging technique for the whole body that produces PET-like images. The DWIBS sequence has been developed with the aim to detect lymph nodes and to differentiate normal and hyperplastic from metastatic lymph nodes. This may be possible caused by alterations in microcirculation and water diffusivity within cancer metastases in lymph nodes.

See also Diffusion Weighted Sequence, Perfusion Imaging, ADC Map, Apparent Diffusion Coefficient, and Diffusion Tensor Imaging.
spacer

• View the DATABASE results for 'Diffusion Weighted Imaging' (11).Open this link in a new window


• View the NEWS results for 'Diffusion Weighted Imaging' (4).Open this link in a new window.
 
Further Reading:
  Basics:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
Novel MRI Technique Could Reduce Breast Biopsies, University of Washington Study
Tuesday, 2 October 2012   by www.eurekalert.org    
Quantitative Apparent Diffusion Coefficient Measurements Obtained by 3-Tesla MRI Are Correlated with Biomarkers of Bladder Cancer Proliferative Activity
   by www.plosone.org    
  News & More:
Stability and repeatability of diffusion-weighted imaging (DWI) of normal pancreas on 5.0 Tesla magnetic resonance imaging (MRI)
Monday, 24 July 2023   by www.nature.com    
MRI innovation makes cancerous tissue light up and easier to see
Monday, 21 March 2022   by www.sciencedaily.com    
Diffusion MRI and machine learning models classify childhood brain tumours
Saturday, 6 March 2021   by physicsworld.com    
Diffusion-weighted MRI in Advanced Epithelial Ovarian Cancer: Apparent Diffusion Coefficient as a Response Marker
Tuesday, 1 October 2019   by pubs.rsna.org    
Novel Imaging Technique Improves Prostate Cancer Detection
Tuesday, 6 January 2015   by health.ucsd.edu    
High-b-value Diffusion-weighted MR Imaging of Suspected Brain Infarction
2000   by www.ajnr.org    
MRI Resources 
Veterinary MRI - MRCP - Shielding - MRI Technician and Technologist Career - Jobs pool - Guidance
 
Generalized Autocalibrating Partially Parallel AcquisitionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(GRAPPA) GRAPPA is a parallel imaging technique to speed up MRI pulse sequences. The Fourier plane of the image is reconstructed from the frequency signals of each coil (reconstruction in the frequency domain).
Parallel imaging techniques like GRAPPA, auto-SMASH and VD-AUTO-SMASH are second and third generation algorithms using k-space undersampling. A model from a part of the center of k-space is acquired, to find the coefficients of the signals from each coil element, and to reconstruct the missing intermediary lines. The acquisition of these additional lines is a form of self-calibration, which lengthens the overall short scan time. The acquisition of these k-space lines provides mapping of the whole field as well as data for the image contrast.
Algorithms of the GRAPPA type work better than the SENSE type in heterogeneous body parts like thoracic or abdominal imaging, or in pulse sequences like echo planar imaging. This is caused by differences between the sensitivity map and the pulse sequence (e.g. artifacts) or an unreliable sensitivity map.
spacer

• View the DATABASE results for 'Generalized Autocalibrating Partially Parallel Acquisition' (2).Open this link in a new window

MRI Resources 
General - Cochlear Implant - Mobile MRI - Brain MRI - Lung Imaging - MRI Centers
 
     1 - 5 (of 98)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 20 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]