Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Contrast Enhanced MRI' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Contrast Enhanced MRI' found in 1 term [] and 14 definitions [], (+ 16 Boolean[] results
previous     26 - 30 (of 31)     next
Result Pages : [1]  [2 3]  [4 5 6 7]
Searchterm 'Contrast Enhanced MRI' was also found in the following services: 
spacer
News  (18)  Resources  (3)  
 
Phase Contrast SequenceMRI Resource Directory:
 - Sequences -
 
(PC) Phase contrast sequences are the basis of MRA techniques utilizing the change in the phase shifts of the flowing protons in the region of interest to create an image. Spins that are moving along the direction of a magnetic field gradient receive a phase shift proportional to their velocity.
In a phase contrast sequence two data sets with a different amount of flow sensitivity are acquired. This is usually accomplished by applying gradient pairs, which sequentially dephase and then rephase spins during the sequence. Both 2D and 3D acquisition techniques can be applied with phase contrast MRA.
The first data set is acquired with a flow compensated sequence, i. e. without flow sensitivity. The second data set is acquired with a flow sensitive sequence. The amount of flow sensitivity is controlled by the strength of the bipolar gradient pulse pair, which is incorporated into the sequence. Stationary tissue undergoes no effective phase change after the application of the two gradients. Caused by the different spatial localization of flowing blood to stationary tissue, it experiences a different size of the second bipolar gradient compared to the first. The result is a phase shift.
The raw data from the two data sets are subtracted. By comparing the phase of signals from each location in the two sequences the exact amount of motion induced phase change can be determined to have a map where pixel brightness is proportional to spatial velocity.
Phase contrast images represent the signal intensity of the velocity of spins at each point within the field of view. Regions that are stationary remain black while moving regions are represented as grey to white.
The phase shift is proportional to the spin's velocity, and this allows the quantitative assessment of flow velocities. The difference MRI signal has a maximum value for opposite directions. This velocity is typically referred to as venc, and depends on the pulse amplitude and distance between the gradient pulse pair. For velocities larger than venc the difference signal is decreased constantly until it gets zero. Therefore, in a phase contrast angiography it is important to correctly set the venc of the sequence to the maximum flow velocity which is expected during the measurement. High venc factors of the PC angiogram (more than 40 cm/sec) will selectively image the arteries (PCA - arteriography), whereas a venc factor of 20 cm/sec will perform the veins and sinuses (PCV or MRV - venography).

See also Flow Quantification, Contrast Enhanced MR Venography, Time of Flight Angiography, Time Resolved Imaging of Contrast Kinetics.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer
 
• Related Searches:
    • Phase Shift
    • Angiography
    • Blood Flow Imaging
    • Blood Flow-Velocity
    • Magnetic Resonance Angiography MRA
 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
MRI Resources 
General - Online Books - Image Quality - Sequences - Nerve Stimulator - Corporations
 
Phase Contrast AngiographyMRI Resource Directory:
 - MRA -
 
(PCA) With this method images of the blood flow-velocity (or any other movement of tissue) are produced. The MRI signal contains both amplitude and phase information. The phase information can be used with subtraction of images with and without a velocity encoding gradient. The signal will be directly proportional to the velocity because of the relation between blood flow-velocity and signal intensity.
This is the strength of PCA, complete suppression of stationary tissue (no velocity - no signal), the direct velocity of flow is being imaged, while in TOF (Inflow) angiography, tissue with short T1 (fat or methaemoglobin) might be visualized.
The strength of the gradient determines the sensitivity to flow. It is set by setting the aliasing or encoding velocity (VENC). Unfortunately, phase sensitization can only be acquired along one axis at a time. Therefore, phase contrast angiographic techniques tend to be 4 times slower than TOF techniques with the same matrix.

See also Phase Contrast Sequence, Magnetic Resonance Angiography, Contrast Enhanced Magnetic Resonance Angiography, Flow Effects and Flow Quantification.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Contrast Angiography' (8).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
  News & More:
MR–ANGIOGRAPHY(.pdf)
MRI Resources 
Bioinformatics - Societies - Fluorescence - Intraoperative MRI - Services and Supplies - Chemistry
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window


• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
Searchterm 'Contrast Enhanced MRI' was also found in the following services: 
spacer
News  (18)  Resources  (3)  
 
Sensitivity EncodingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(SENSE) A MRI technique for relevant scan time reduction. The spatial information related to the coils of a receiver array are utilized for reducing conventional Fourier encoding. In principle, SENSE can be applied to any imaging sequence and k-space trajectories. However, it is particularly feasible for Cartesian sampling schemes. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps.
SENSE reconstruction without artifacts relies on accurate knowledge of the individual coil sensitivities. For sensitivity assessment, low-resolution, fully Fourier-encoded reference images are required, obtained with each array element and with a body coil.
The major negative point of parallel imaging techniques is that they diminish SNR in proportion to the numbers of reduction factors. R is the factor by which the number of k-space samples is reduced. In standard Fourier imaging reducing the sampling density results in the reduction of the FOV, causing aliasing. In fact, SENSE reconstruction in the Cartesian case is efficiently performed by first creating one such aliased image for each array element using discrete Fourier transformation (DFT).
The next step then is to create a full-FOV image from the set of intermediate images. To achieve this one must undo the signal superposition underlying the fold-over effect. That is, for each pixel in the reduced FOV the signal contributions from a number of positions in the full FOV need to be separated. These positions form a Cartesian grid corresponding to the size of the reduced FOV.
The advantages are especially true for contrast-enhanced MR imaging such as dynamic liver MRI (liver imaging) , 3 dimensional magnetic resonance angiography (3D MRA), and magnetic resonance cholangiopancreaticography (MRCP).
The excellent scan speed of SENSE allows for acquisition of two separate sets of hepatic MR images within the time regarded as the hepatic arterial-phase (double arterial-phase technique) as well as that of multidetector CT.
SENSE can also increase the time efficiency of spatial signal encoding in 3D MRA. With SENSE, even ultrafast (sub second) 4D MRA can be realized.
For MRCP acquisition, high-resolution 3D MRCP images can be constantly provided by SENSE. This is because SENSE resolves the presence of the severe motion artifacts due to longer acquisition time. Longer acquisition time, which results in diminishing image quality, is the greatest problem for 3D MRCP imaging.
In addition, SENSE reduces the train of gradient echoes in combination with a faster k-space traversal per unit time, thereby dramatically improving the image quality of single shot echo planar imaging (i.e. T2 weighted, diffusion weighted imaging).
spacer

• View the DATABASE results for 'Sensitivity Encoding' (12).Open this link in a new window

 
Further Reading:
  News & More:
Image Characteristics and Quality
   by www.sprawls.org    
MRI Resources 
Jobs - Liver Imaging - Services and Supplies - MRI Centers - Musculoskeletal and Joint MRI - RIS
 
Time Resolved Imaging of Contrast KineticsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(TRICKS) Time resolved imaging of contrast kinetics is a MRI technique, which increases the temporal resolution of dynamic contrast enhanced magnetic resonance angiography (CE-MRA) sequences. The K-space is divided into regions by increasing the sampling rate at the lower spatial frequencies and by reducing the sampling rate at the higher spatial frequencies. Since the time duration between two frames is shortened, it can be observed how frequently and how quickly the images are repeated at the exact same location.
TRICKS is particularly useful for dynamic vascular studies with high temporal resolution. TRICKS improves the calculation of the contrast bolus arrival and improves the characterization of arterio-venous malformations (AVMs).

See also Automatic Bolus Detection, MRA, Cardiac MRI.
spacer

• View the DATABASE results for 'Time Resolved Imaging of Contrast Kinetics' (2).Open this link in a new window

 
Further Reading:
  Basics:
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
MRI Resources 
Homepages - Blood Flow Imaging - PACS - Guidance - Cardiovascular Imaging - Open Directory Project
 
previous      26 - 30 (of 31)     next
Result Pages : [1]  [2 3]  [4 5 6 7]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]