Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'DTI' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 DTI            Diffusion Tensor Imaging 
Searchterm 'DTI' was found in the Abbreviation Register. 
Result : Searchterm 'DTI' found in 0 term [] and 5 definitions []
1 - 5 (of 5)     
Result Pages : [1]
Searchterm 'DTI' was also found in the following services: 
spacer
News  (8)  Resources  (2)  Forum  (10)  
 
Diffusion Tensor ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Diffusion Weighted Imaging -
 
(DTI) Diffusion tensor imaging is the more sophisticated form of DWI, which allows for the determination of directionality as well as the magnitude of water diffusion. This kind of MR imaging can estimates damage to nerve fibers that connect the area of the brain affected by the stroke to brain regions that are distant from it, and can be used to determine the effectiveness of stroke prevention medications.
DTI (FiberTrak) enables to visualize white matter fibers in the brain and can map (trace image) subtle changes in the white matter associated with diseases such as multiple sclerosis and epilepsy, as well as assessing diseases where the brain's wiring is abnormal, such as schizophrenia.
The fractional anisotropy (FA) gives information about the shape of the diffusion tensor at each voxel. The FA is based on the normalized variance of the eigenvalues. The fractional anisotropy reflects differences between an isotropic diffusion and a linear diffusion. The FA range is between 0 and 1 (0 = isotropic diffusion, 1 = highly directional).
The development of new imaging methods and some useful analysis techniques, such as 3-dimensional anisotropy contrast (3DAC) and spatial tracking of the diffusion tensor tractography (DTT), are currently under study.
spacer
 
• Share the entry 'Diffusion Tensor Imaging':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • High Field MRI
    • Nerve Conductivity
    • B-Value
    • High Field MRI
    • Brain MRI
 
Further Reading:
  Basics:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
What MRI-Derived Data and Other Factors Reveal About White Matter Hyperintensity in Former Football Players
Saturday, 23 December 2023   by www.diagnosticimaging.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Learning difficulties linked to poor brain connectivity
Monday, 2 March 2020   by cosmosmagazine.com    
New imaging technique reveals early brain damage caused by hypertension
Friday, 18 September 2015   by www.medicalnewstoday.com    
Imaging shows structural changes in mild traumatic brain injury
Thursday, 25 October 2007   by www.eurekalert.org    
MRI Resources 
Jobs - MRI Training Courses - Anatomy - Cardiovascular Imaging - Homepages - Blood Flow Imaging
 
High Field MRI
 
The principal advantage of MRI at high field is the increase in signal to noise ratio. This can be used to improve anatomic and/or temporal resolution and reduce scan time while preserving image quality. MRI devices for whole body imaging for human use are available up to 3 tesla (3T). Functional MRI (fMRI) and MR spectroscopy (MRS) benefit significantly. In addition, 3T machines have a great utility in applications such as TOF MRA and DTI. Higher field strengths are used for imaging of small parts of the body or scientific animal experiments. Higher contrast may permit reduction of gadolinium doses and, in some cases, earlier detection of disease.
Using high field MRI//MRS, the RF-wavelength and the dimension of the human body complicating the development of MR coils. The absorption of RF power causes heating of the tissue. The energy deposited in the patient's tissues is fourfold higher at 3T than at 1.5T. The specific absorption rate (SAR) induced temperature changes of the human body are the most important safety issue of high field MRI//MRS.
Susceptibility and chemical shift dispersion increase like T1, therefore high field MRI occasionally exhibits imaging artifacts. Most are obvious and easily recognized but some are subtle and mimic diseases. A thorough understanding of these artifacts is important to avoid potential pitfalls. Some imaging techniques or procedures can be utilized to remove or identify artifacts.

See also Diffusion Tensor Imaging.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
Medical-Ultrasound-Imaging.comMagnetic Resonance Guided Focused Ultrasound,  High Intensity Focused Ultrasound
spacer

• View the DATABASE results for 'High Field MRI' (16).Open this link in a new window


• View the NEWS results for 'High Field MRI' (9).Open this link in a new window.
 
Further Reading:
  Basics:
Next-generation 7 T scanner ramps the resolution of brain MR imaging
Wednesday, 17 January 2024   by physicsworld.com    
A paired dataset of T1- and T2-weighted MRI at 3 Tesla and 7 Tesla
Thursday, 27 July 2023   by www.nature.com    
CLINICAL WHOLE BODY MRI AT 3.0 T(.pdf)
2001
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
7-T clinical MRI of the shoulder in patients with suspected lesions of the rotator cuff
Friday, 7 February 2020   by eurradiolexp.springeropen.com    
A 100-hour MRI scan captured the most detailed look yet at a whole human brain
Monday, 8 July 2019   by www.sciencenews.or    
T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
Friday, 16 October 2015   by www.ncbi.nlm.nih.gov    
Ultra-high-field MRI reveals language centres in the brain in much more detail
Tuesday, 28 October 2014   by medicalxpress.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
High-Resolution, Spin-Echo BOLD, and CBF fMRI at 4 and 7 T(.pdf)
October 2002   by otg.downstate.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
Absorption and Emission - Online Books - Calculation - Abdominal Imaging - Most Wanted - Guidance
 
Intera 1.5TPanorama 0.2InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/de/products/mri/products/ From Philips Medical Systems;
the Intera-family offers with this member a wide range of possibilities, efficiency and a ergonomic and intuitive serving-platform. Also available as Intera CV for cardiac and Intera I/T for interventional MR procedures.
The scanners are also equipped with SENSE technology, which is essential for high-quality contrast enhanced magnetic resonance angiography, interactive cardiac MR and diffusion tensor imaging (DTI) fiber tracking.
The increased accuracy and clarity of MR scans obtained with this technology allow for faster and more accurate diagnosis of potential problems like patient friendliness and expands the breadth of applications including cardiology, oncology and interventional MR.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
Standard: head, body, C1, C3; Optional: Small joint, flex-E, flex-R, endocavitary (L and S), dual TMJ, knee, neck, T/L spine, breast; Optional phased array: Spine, pediatric, 3rd party connector; Optional SENSE coils: Flex-S-M-L, flex body, flex cardiac
Optional
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, Modified-SE (TSE), IR (T1, T2, PD), STIR, FLAIR, SPIR, FFE, T1-FFE, T2-FFE, Balanced FFE, TFE, Balanced TFE, Dynamic, Keyhole, 3D, Multi Chunk 3D, Multi Stack 3D, K Space Shutter, MTC, TSE, Dual IR, DRIVE, EPI, Cine, 2DMSS, DAVE, Mixed Mode; Angiography: PCA, MCA, Inflow MRA, CE
IMAGING MODES
Single Slice 2D , Multi Single Slice 2D, Multi Slice 2D, 3D, Multi Chunk 3D, Multi Stack 3D
TR
2.9 (Omni), 1.6 (Power), 1.6 (Master/Expl) msec
TE
1.0 (Omni), 0.7 (Power), 0.5 (Master/Expl) msec
SINGLE/MULTI SLICE
RapidView Recon. greater than 500 @ 256 Matrix
FOV
Max. 53 cm
0.1 mm(Omni), 0.05 mm (Pwr/Mstr/Expl)
128 x 128, 256 x 256,512 x 512,1024 x 1024 (64 for BOLD img.)
MEASURING MATRIX
Variable in 1% increments
PIXEL INTENSITY
Lum.: 120 cd/m2; contrast: 150:1
Variable (op. param. depend.)
60 cm diameter (patient)
MAGNET WEIGHT
2900 kg
H*W*D
240 x 188 x 157 cm
POWER REQUIREMENTS
380/400 V
CRYOGEN USE
0.03 L/hr helium
STRENGTH
30 mT/m
5-GAUSS FRINGE FIELD
2.4 m / 3.8 m
Passive and dynamic
spacer

• View the DATABASE results for 'Intera 1.5T™' (2).Open this link in a new window

Searchterm 'DTI' was also found in the following services: 
spacer
News  (8)  Resources  (2)  Forum  (10)  
 
Intera 3.0TPanorama 0.2InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/de/products/mri/products/ From Philips Medical Systems;
the Intera 3 T high field system, the first with a compact magnet, which is built on the same platform as the 1.5 T, is targeted to high-end neurological, orthopedic and cardiovascular imaging applications with maximum patient comfort and acceptance without compromising image quality and clinical performance. Useable for clinical routine and research. The Intera systems offer diffusion tensor imaging (DTI) fiber tracking that measures movement of water in the brain and can therefore detect areas of the brain where normal movement of water is disrupted.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
Standard: head, body, C1, C3; Optional: Small joint, flex-E, flex-R, endocavitary (L and S), dual TMJ, knee, neck, T/L spine, breast; Optional phased array: spine;; Optional SENSE coils: Flex body, flex cardiac, neuro-vascular, head
Optional
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, Modified-SE, IR (T1, T2, PD), STIR, FLAIR, SPIR, FFE, T1-FFE, T2-FFE, Balanced FFE, TFE, Balanced TFE, Dynamic, Keyhole, 3D, Multi Chunk 3D, Multi Stack 3D, K Space Shutter, MTC, TSE, Dual IR, DRIVE, EPI, Cine, 2DMSS, DAVE, Mixed Mode; Angiography: Inflow MRA, TONE, PCA, CE MRA
IMAGING MODES
Single Slice 2D , Multi Single Slice 2D, Multi Slice 2D, 3D, Multi Chunk 3D, Multi Stack 3D
TR
Min. 1.6 (Master) msec
TE
Min. 0.5 (Master) msec
SINGLE/MULTI SLICE
RapidView Recon. greater than 500 @ 256 Matrix
FOV
Max. 53 cm
0.1 mm (Omni), 0.05 mm (Power)
128 x 128, 256 x 256,512 x 512,1024 x 1024 (64 for Bold img)
MEASURING MATRIX
Variable in 1% increments
PIXEL INTENSITY
Lum.: 120 cd/m2; contrast: 150:1
Variable (op. param. depend.)
60 x 60 cm
MAGNET WEIGHT
5500 kg
H*W*D
240 x 188 x 157 cm
POWER REQUIREMENTS
380/400 V
CRYOGEN USE
0.07 L/hr helium
STRENGTH
30 (Master) mT/m
5-GAUSS FRINGE FIELD
3.0 m / 5.2 m
Passive and dynamic
spacer

• View the DATABASE results for 'Intera 3.0T™' (2).Open this link in a new window

MRI Resources 
Bioinformatics - Fluorescence - Knee MRI - MRCP - RIS - Spectroscopy pool
 
Special ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Special imaging primarily means advanced MRI techniques used for qualitative and quantitative measurement of biological metabolism as e.g., spectroscopy, perfusion imaging (PWI, ASL), diffusion weighted imaging (DWI, DTI, DTT) and brain function (BOLD, fMRI). This physiological magnetic resonance techniques offer insights into brain structure, function, and metabolism.
Spectroscopy provides functional information related to identification and quantification of e.g. brain metabolites. MR perfusion imaging has applications in stroke, trauma, and brain neoplasm. MRI provides the high spatial and temporal resolution needed to measure blood flow to the brain. arterial spin labeling techniques utilize the intrinsic protons of blood and brain tissue, labeled by special preparation pulses, rather than exogenous tracers injected into the blood.
MR diffusion tensor imaging characterizes the ability of water to spread across the brain in different directions. Diffusion parallel to nerve fibers has been shown to be greater than diffusion in the perpendicular direction. This provides a tool to study in vivo fiber connectivity in brain MRI.
FMRI allows the detection of a functional activation in the brain because cortical activity is intimately related to local metabolism changes.

See also Diffusion Tensor Tractography.
spacer

• View the NEWS results for 'Special Imaging' (14).Open this link in a new window.
 
Further Reading:
  Basics:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
Philips and University Medical Center Utrecht Partner to Advance Quantitative MRI With MR-STAT
Monday, 10 August 2020   by www.itnonline.com    
This new 'whole body' MRI is better for cancer patients
Tuesday, 28 January 2014   by www.physiciansnews.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
MRI Resources 
Knee MRI - MRI Training Courses - Stent - Education pool - Coils - Non-English
 
     1 - 5 (of 5)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 28 January 2025]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]