Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Direct Current' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Direct Current' found in 1 term [] and 0 definition [], (+ 18 Boolean[] results
previous     11 - 15 (of 19)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Direct Current' was also found in the following services: 
spacer
News  (2)  Resources  (1)  
 
Bird Cage CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A RF coil, often a transmit receive coil with a number of wires running along the z-direction, arranged to give a cosine current variation around the circumference of the coil, which looks like a bird cage. The bird cage coil works on a different principle to conventionally tuned local and surround coils in that it behaves like a tuned transmission line with one complete cycle of standing wave around the circumference. The frequency supply is generated by an oscillator, which is modulated to form a shaped pulse by a product detector controlled by the waveform generator. The signal must be amplified to 1000's of watts. This can be done using either solid state electronics, valves or a combination of both.
The bird cage coil design provides the best field homogeneity of all RF imaging coils.
One advantage is that it is simple to produce an exceedingly uniform B1 radio frequency field over most of the coil's volume, with the result of images with a high degree of uniformity.
A second advantage is that nodes with zero voltage occur 90° away from the driven part of the coil, thus facilitating the introduction of a second signal in quadrature, which produces a circularly polarized radio frequency field.
This type of volume coil is used for brain (head) MRI, or MR imaging of joints, such as the wrist or knees.

See also the related poll result: '3rd party coils are better than the original manufacturer coils'
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Brain MRI
    • MRI Equipment
    • Radio Frequency Coil
    • Imaging Coil
    • Magnetic Resonance Imaging MRI
 
Further Reading:
  Basics:
HEAD AND NECK MRI GRADIENT COIL DESIGN
Thursday, 26 August 1999   by www.imaging.robarts.ca    
System Architecture
2003   by www.revisemri.com    
  News & More:
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
TOSHIBA INTRODUCES 32 ELEMENT COILS FOR ITS VANTAGE TITAN MR SYSTEMS
Tuesday, 9 November 2010   by medical.toshiba.com    
Searchterm 'Direct Current' was also found in the following service: 
spacer
Radiology  (1) Open this link in a new window
Electromagnet
 
A type of magnet that utilizes coils of wire, typically wound on an iron core, so that as current flows through the coil it becomes magnetized. The direction of the magnetic field is parallel to the long axis of the coil. Whole body electromagnets, used in medical imaging (also called resistive) are limited to their field strength, because the weight becomes prohibitively large at high field MRI. The magnetic field shuts down, if the current is switched of. Because this type of magnet generates heat, a good cooling system is essential.
For a stronger magnetic field, the wires must be manufactured of superconducting materials to reduce the power needed to produce the field.

See also Resistive Magnet, Superconducting Magnet and Uprightâ„¢ MRI
spacer

• View the DATABASE results for 'Electromagnet' (24).Open this link in a new window


• View the NEWS results for 'Electromagnet' (8).Open this link in a new window.
 
Further Reading:
  Basics:
What types of magnets are there?
   by my.execpc.com    
  News & More:
'Electromagnetic Wormhole' Possible with Invisibility Technology
Monday, 15 October 2007   by www.brightsurf.com    
Superconductors Face the Future
Wednesday, 15 September 2010   by www.nanotech-now.com    
MRI Resources 
Process Analysis - Case Studies - Developers - Chemistry - Health - Implant and Prosthesis
 
Ventilation AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Inert hyperpolarized gases are under development for imaging air spaces, including those in the lungs. Because they mostly contain air and water, lungs are difficult organs to image.
These ventilation agents (gases) have potential in lung imaging and are currently used in studies of the pulmonary ventilation:
•
perfluorinated gases
•
aerosolized gadolinium-DTPA
•
hyperpolarized gases (xenon-129, helium-3)
•
molecular oxygen

Specific isotopes of inert gases can be hyperpolarized. Hyperpolarized is a state in which almost all of the atoms nuclei are spinning in the same direction. Once the nuclei in the isotope 3He have been hyperpolarized using a laser, they remain in this state for several days. The inert, hyperpolarized gas can then be used in a lung imaging study, where the high concentration of polarized nuclei provides a sharp contrast in MRI. The technique is already being developed with a view to commercialization by Magnetic Imaging Technologies in Durham, North Carolina. According to the company, existing MRI equipment can be used with a few minor modifications, along with a gas polarizer. The technique could provide early detection and monitoring of pulmonary disease.
Hyperpolarized 129Xe can also be used as a magnetic resonance tracer because of its MR-enhanced sensitivity combined with its high solubility. This isotope differs from 3He in that it can dissolve in the blood. Strong enhancement of the nuclear spin polarization of xenon in the gas phase can be achieved by optical pumping of rubidium and subsequent spin-exchange with the xenon nuclei. This technique can increase the magnetic resonance signal of xenon by five orders of magnitude, thus allowing NMR detection of xenon in very low concentration. MR spectroscopy and imaging of optically polarized xenon shows considerable potential for medical applications (see also back projection imaging).
Nycomed Amersham anticipated the market for inert gases in pulmonary imaging. The company obtained an exclusive license for the use of helium (He) and xenon (Xe) as MRI contrast agents. Currently, the US FDA has not yet approved the commercial distribution of inert gas imaging equipment, because the technique is still undergoing trials.
spacer

• View the DATABASE results for 'Ventilation Agents' (3).Open this link in a new window

 
Further Reading:
  Basics:
New oxygen-enhanced MRI scan 'helps identify most dangerous tumours'
Thursday, 10 December 2015   by www.dailymail.co.uk    
Low-Field MRI of Laser Polarized Noble Gas
   by xenon.unh.edu    
  News & More:
Hyperpolarized Gas MRI for Pulmonary Disease Assessment: Interview with Richard Hullihen, CEO of Polarean Imaging
Wednesday, 9 September 2020   by www.medgadget.com    
Pumpkin-shaped molecule enables 100-fold improved MRI contrast: new agent for detecting pathological cells
Tuesday, 13 October 2015   by phys.org    
MRI Mapping of Cerebrovascular Reactivity via Gas Inhalation Challenges
Wednesday, 17 December 2014   by www.jove.com    
Using MRI to study gas reactions
Thursday, 31 January 2008   by www.theengineer.co.uk    
New Technique Reveals Insights Into Lung Disease
Thursday, 13 December 2007   by www.sciencedaily.com    
Searchterm 'Direct Current' was also found in the following services: 
spacer
News  (2)  Resources  (1)  
 
DeviceForum -
related threadsInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
Magnetic resonance imaging (MRI) is based on the magnetic resonance phenomenon, and is used for medical diagnostic imaging since ca. 1977 (see also MRI History).
The first developed MRI devices were constructed as long narrow tunnels. In the meantime the magnets became shorter and wider. In addition to this short bore magnet design, open MRI machines were created. MRI machines with open design have commonly either horizontal or vertical opposite installed magnets and obtain more space and air around the patient during the MRI test.
The basic hardware components of all MRI systems are the magnet, producing a stable and very intense magnetic field, the gradient coils, creating a variable field and radio frequency (RF) coils which are used to transmit energy and to encode spatial positioning. A computer controls the MRI scanning operation and processes the information.
The range of used field strengths for medical imaging is from 0.15 to 3 T. The open MRI magnets have usually field strength in the range 0.2 Tesla to 0.35 Tesla. The higher field MRI devices are commonly solenoid with short bore superconducting magnets, which provide homogeneous fields of high stability.
There are this different types of magnets:
The majority of superconductive magnets are based on niobium-titanium (NbTi) alloys, which are very reliable and require extremely uniform fields and extreme stability over time, but require a liquid helium cryogenic system to keep the conductors at approximately 4.2 Kelvin (-268.8° Celsius). To maintain this temperature the magnet is enclosed and cooled by a cryogen containing liquid helium (sometimes also nitrogen).
The gradient coils are required to produce a linear variation in field along one direction, and to have high efficiency, low inductance and low resistance, in order to minimize the current requirements and heat deposition. A Maxwell coil usually produces linear variation in field along the z-axis; in the other two axes it is best done using a saddle coil, such as the Golay coil.
The radio frequency coils used to excite the nuclei fall into two main categories; surface coils and volume coils. The essential element for spatial encoding, the gradient coil sub-system of the MRI scanner is responsible for the encoding of specialized contrast such as flow information, diffusion information, and modulation of magnetization for spatial tagging.
An analog to digital converter turns the nuclear magnetic resonance signal to a digital signal. The digital signal is then sent to an image processor for Fourier transformation and the image of the MRI scan is displayed on a monitor.

For Ultrasound Imaging (USI) see Ultrasound Machine at Medical-Ultrasound-Imaging.com.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of' and 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradGamma Camera,  Linear Accelerator
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Real-Time Scanner
spacer

• View the DATABASE results for 'Device' (141).Open this link in a new window


• View the NEWS results for 'Device' (29).Open this link in a new window.
 
Further Reading:
  News & More:
small-steps-can-yield-big-energy-savings-and-cut-emissions-mris
Thursday, 27 April 2023   by www.itnonline.com    
Portable MRI can detect brain abnormalities at bedside
Tuesday, 8 September 2020   by news.yale.edu    
Point-of-Care MRI Secures FDA 510(k) Clearance
Thursday, 30 April 2020   by www.diagnosticimaging.com    
World's First Portable MRI Cleared by FDA
Monday, 17 February 2020   by www.medgadget.com    
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
Cheap, portable scanners could transform brain imaging. But how will scientists deliver the data?
Tuesday, 16 April 2019   by www.sciencemag.org    
The world's strongest MRI machines are pushing human imaging to new limits
Wednesday, 31 October 2018   by www.nature.com    
Kyoto University and Canon reduce cost of MRI scanner to one tenth
Monday, 11 January 2016   by www.electronicsweekly.com    
A transportable MRI machine to speed up the diagnosis and treatment of stroke patients
Wednesday, 22 April 2015   by medicalxpress.com    
Portable 'battlefield MRI' comes out of the lab
Thursday, 30 April 2015   by physicsworld.com    
Chemists develop MRI technique for peeking inside battery-like devices
Friday, 1 August 2014   by www.eurekalert.org    
New devices doubles down to detect and map brain signals
Monday, 23 July 2012   by scienceblog.com    
Searchterm 'Direct Current' was also found in the following service: 
spacer
Radiology  (1) Open this link in a new window
Field Inhomogeneity ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Field inhomogeneity
DESCRIPTION
Image distortion signal loss
REASON
HELP
Larger FOV, oversampling
A disturbance of the field homogeneity, because of magnetic material (inside or outside the patient), technical problems or scanning at the edge of the field.
When images were obtained in a progression from the center to the edge of the coil, the homogeneity of the field observed by the imaged volume, changes when the distance from the center of the volume increase. The same problem appears by scanning at a distance from the isocenter in left-right direction or too large field of view.
There are different types of bad image quality, the images are noisy, distorted or the fat suppression doesn't work because of badly set shim currents.
E.g. by using an IR sequence, changes in the T1 recovery rates of the tissues are involved. The inversion time at the center of the imaged volume is appropriate to suppress fat, but at the edge of the coil the same inversion time is sufficient to suppress water. Since the inversion time is not changed, the T1 recovery rates will increase.
mri safety guidance
Image Guidance
Take a smaller imaging volume (and for fat suppression a volume shimming), take care that the imaged region is at the center of the coil and that no magnetic material is inside the imaging volume.
spacer

• View the DATABASE results for 'Field Inhomogeneity Artifact' (3).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Contrast Agents - Calculation - MRA - Service and Support - Spine MRI - Pacemaker
 
previous      11 - 15 (of 19)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]