Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Echo Offset' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Echo Offset' found in 1 term [] and 0 definition [], (+ 7 Boolean[] results
1 - 5 (of 8)     next
Result Pages : [1]  [2]
MRI Resources 
Stent - Contrast Enhanced MRI - Quality Advice - Service and Support - Artifacts - Spectroscopy
 
Echo Offset
 
Echo offset is the time setting of spin echo and gradient echo to be not coincident and to generate phase differences between different spectral line signals (e.g., water and fat). The echo offset is the product of the frequency line difference and the time difference (TD) in the echo times and is equal to the magnitude of the result of the phase difference between two spectral lines. Phases may not change linearly with echo offset time in the presence of a large field inhomogeneity. An echo offset excitation pulse sequence can be used in the magnetic field mapping method, to generate maps from which the standard deviation of the phase difference can be calculated.
spacer
 
• Share the entry 'Echo Offset':  Facebook  Twitter  LinkedIn  
 
Further Reading:
  News & More:
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
A short-TR single-echo spin-echo breath-hold method for assessing liver T2
Sunday, 10 December 2023   by link.springer.com    
MRI Resources 
Spectroscopy pool - Stimulator pool - Artifacts - Crystallography - Resources - Functional MRI
 
Chemical Shift ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Chemical shift, black boundary, spatial misregistration, relief
DESCRIPTION
Black or bright band
During frequency encoding, fat protons precess slower than water protons in the same slice because of their magnetic shielding. Through the difference in resonance frequency between water and fat, protons at the same location are misregistrated (dislocated) by the Fourier transformation, when converting MRI signals from frequency to spatial domain. This chemical shift misregistration cause accentuation of any fat-water interfaces along the frequency axis and may be mistaken for pathology. Where fat and water are in the same location, this artifact can be seen as a bright or dark band at the edge of the anatomy.
Protons in fat and water molecules are separated by a chemical shift of about 3.5 ppm. The actual shift in Hertz (Hz) depends on the magnetic field strength of the magnet being used. Higher field strength increases the misregistration, while in contrast a higher gradient strength has a positive effect. For a 0.3 T system operating at 12.8 MHz the shift will be 44.8 Hz compared with a 223.6 Hz shift for a 1.5 T system operating at 63.9 MHz.
mri safety guidance
Image Guidance
For artifact reduction helps a smaller water fat shift (higher bandwidth), a higher matrix, an in phase TE or a spin echo technique. Since the misregistration offset is present in the read out axis the patient may be rescanned with this axis parallel to the fat-water interface. Steeper gradient may be employed to reduce the chemical shift offset in mm. Another strategy is to employ specialized pulse sequences such as fat saturation or inversion recovery imaging. Fat suppression techniques eliminate chemical shift artifacts caused by the lack of fat signal.

See also Black Boundary Artifact and Magnetic Resonance Spectroscopy.
spacer

• View the DATABASE results for 'Chemical Shift Artifact' (7).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
  News & More:
What is chemical shift artefact? Why does it occur? How many Hz at 1.5 T?
   by www.revisemri.com    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
MRI Resources 
Societies - Universities - Education pool - Abdominal Imaging - Hospitals - NMR
 
Constructive Interference Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(CISS) This gradient echo sequence is a stimulated T2 echo. Two TrueFISP sequences are acquired with differing RF pulses and than combined for strong T2 Weighted high resolution 3D images.
These TrueFISP sequences are normally affected by dark phase dispersion bands, which are caused by patient induced local field inhomogeneities and made prominent by the relatively long TR used. The different excitation pulse regimes offset these bands in the 2 sequences. Combining the images results in a picture free of banding. The image combination is performed automatically after data collection, adding some time to the reconstruction process. The advantage of the 3D CISS sequence is its combination of high signal levels and extremely high spatial resolution.
Used for, e.g. inner ear, cranial nerves and cerebellum.

See also Steady State Free Precession.
spacer
 
Further Reading:
  News & More:
Pediatric and Adult Cochlear Implantation1
2003   by radiographics.rsnajnls.org    
MRI Resources 
Fluorescence - Safety Products - Jobs pool - Libraries - Sequences - PACS
 
Partial Echo
 
(PE) The partial echo technique (also called fractional echo) is used to shorten the minimum echo time. By the acquisition of only a part of k-space data this technique benefits (like all partial Fourier techniques) from the complex conjugate symmetry between the k-space halves (this is called Hermitian symmetry).
The dephasing gradient in the frequency direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened. Partial echo gives a better SNR at a given TE when a smaller FOV or thinner slices are selected, allows a longer sampling time, and a larger water fat shift (WFS, see also bandwidth) due to a lower gradient amplitude. The resolution is not affected. This is often used in gradient echo sequences (e.g. FLASH, Contrast Enhanced Magnetic Resonance Angiography) to reduce the echo time and yields a lower gradient moment. The disadvantage of using a partial echo can be a lower SNR, although this may be partly offset by the reduced echo time.
Also called Fractional Echo, Read Conjugate Symmetry, Single Side View.

See also Partial Fourier Technique and acronyms for 'partial echo' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Echo' (4).Open this link in a new window

 
Further Reading:
  Basics:
Method and apparatus for subterranean formation flow imaging
   by www.google.com    
MRI Resources 
Implant and Prosthesis - Chemistry - Pregnancy - Functional MRI - Mass Spectrometry - Cardiovascular Imaging
 
Partial Flip Angle
 
(PFI) A flip angle of less than 90° only partially converts the z-magnetization, leaving a fraction cos a along the longitudinal direction. A flip angle of 90° converts all the z-magnetization into xy-magnetization.
When the repetition time is shorter than T1, the use of a partial flip angle can lead to higher signal intensity. The maximum signal intensity is given by the Ernst angle. For spin echo pulse sequences using an odd number of 180° pulses, an effect similar to the use of a partial flip angle is obtained by using a flip angle greater than 90° to offset the inversion of the remaining longitudinal magnetization by the 180° pulse.
spacer
MRI Resources 
Mobile MRI Rental - Jobs - Nerve Stimulator - Musculoskeletal and Joint MRI - Safety pool - Veterinary MRI
 
     1 - 5 (of 8)     next
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]