Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Field Inhomogeneity Artifact' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Field Inhomogeneity Artifact' found in 1 term [] and 2 definitions [], (+ 7 Boolean[] results
previous     6 - 10 (of 10)     
Result Pages : [1]  [2]
MRI Resources 
Patient Information - Blood Flow Imaging - Research Labs - Education pool - Shoulder MRI - Veterinary MRI
 
Inhomogeneity
 
Inhomogeneity is the degree of lack of homogeneity, for example the fractional deviation of the local magnetic field from the average value of the field. Inhomogeneities of the static magnetic field, produced by the scanner as well as by object susceptibility, is unavoidable in MRI. The large value of gyromagnetic coefficient causes a significant frequency shift even for few parts per million field inhomogeneity, which in turn causes distortions in both geometry and intensity of the MR images.
Manufacturers try to make the magnetic field as homogeneous as possible, especially at the core of the scanner. Even with an ideal magnet, a little inhomogeneity is always left and is caused in addition by the susceptibility of the imaging object. The geometrical distortion (displacement of the pixel locations) are important e.g., for some cases as stereotactic surgery. Displacements up to 3 to 5 mm have been reported. The second problem is the undesired changes in the intensity or brightness of pixels, which may cause problems in determining different tissues and reduce the maximum achievable image resolution.
mri safety guidance
Image Guidance
General strategies for reducing field inhomogeneity induced artifacts:
Increasing the strength of the gradient magnetic field.
Decreasing the echo time.
Improving the image resolution. Phase encoding. Postprocessing.
spacer
 
• Related Searches:
    • Single Volume Spectroscopy
    • Susceptibility Artifact
    • Shimming
    • Moire Fringes (Artifact)
    • Gradient Echo
 
Further Reading:
  News & More:
Why non-magnetic capacitors matter in medical imaging
Wednesday, 19 February 2020   by www.medicaldesignandoutsourcing.com    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
MRI Resources 
Breast MRI - DICOM - Implant and Prosthesis pool - MRI Physics - MRCP - Jobs
 
Susceptibility ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
DESCRIPTION
Signal dropout, bright spots, spatial distortion
REASON
HELP
Remove the metal, do not take a gradient echo sequence, take a short echo time
Materials with magnetic susceptibility cause this artifact. There are in general three kinds of materials with magnetic susceptibility: ferromagnetic materials (iron, nickel etc.) with a strong influence and paramagnetic/diamagnetic (aluminium, platinum etc./gold, water, most organic compounds etc.) materials with a minimal/non influence on magnetic fields. In MRI, susceptibility artifacts are caused for example by medical devices in or near the magnetic field or by implants of the patient. These materials with magnetic susceptibility distort the linear magnetic field gradients, which results in bright areas (misregistered signals) and dark areas (no signal) nearby the magnetic material.
mri safety guidance
Image Guidance
Use a spin echo or a fast spin echo sequence, because gradient echo sequences are more sensitve to susceptibility artifacts. A high bandwidth (small water fat shift) and a short echo time help also to reduce this artifact.
In some cases it is even beneficial to use a gradient echo sequence, e.g. a cavernom contains some iron-rich haemosiderin, which also causes a signal void on gradient echo sequences and for this purpose increases the diagnostic image quality.
spacer

• View the DATABASE results for 'Susceptibility Artifact' (8).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
Susceptibility Artifacts
   by www.mritutor.org    
  News & More:
Metal Artefact Reduction
Thursday, 9 June 2011   by www.revisemri.com    
Ultrashort echo time (UTE) MRI of the spine in thalassaemia
February 2004   by bjr.birjournals.org    
MRI Resources 
Lung Imaging - Case Studies - MRI Reimbursement - Distributors - Most Wanted - Jobs pool
 
Metal ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Metal, susceptibility
DESCRIPTION
Signal dropout, bright spots
REASON
HELP
Remove the metal
Ferromagnetic metal will cause a magnetic field inhomogeneity, which in turn causes a local signal void, often accompanied by an area of high signal intensity, as well as a distortion of the image. They create their own magnetic field and dramatically alter precession frequencies of protons in the adjacent tissues. Tissues adjacent to ferromagnetic components become influenced by the induced magnetic field of the metal hardware rather than the parent field and, therefore, either fail to precess or do so at a different frequency and hence do not generate useful signal. Two components contribute to susceptibility artifact, induced magnetism in the ferromagnetic component itself and induced magnetism in protons adjacent to the component.
Artifacts from metal may have varied appearances on MRI scans due to different type of metal or configuration of the piece of metal. The biocompatibility of metallic alloys, stainless steel, cobalt chrome and titanium alloy is based on the presence of a constituent element within the alloy that has the ability to form an adherent oxide coating that is stable, chemically inert and hence biocompatible. In relation to imaging titanium alloys are less ferromagnetic than both cobalt and stainless steel, induce less susceptibility artifact and result in less marked image degradation.
mri safety guidance
Image Guidance
Remove the metal when possible or take a not so sensitive sequence (a SE or another sequence with a rephasing 180° pulse).

See also Susceptibility Artifact.
spacer

• View the DATABASE results for 'Metal Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
Metal-Induced Artifacts in MRI
   by www.ajronline.org    
Metal Artefact Reduction
Thursday, 9 June 2011   by www.revisemri.com    
  News & More:
Multiacquisition with variable resonance image combination T2 (MAVRIC SL T2) for postoperative cervical spine with artificial disc replacement
Friday, 11 November 2022   by www.nature.com    
Modeling of Active Shimming of Metallic Needles for Interventional MRI
Monday, 29 June 2020   by pubmed.ncbi.nlm.nih.gov    
MRI Resources 
Jobs pool - Liver Imaging - Most Wanted - Shoulder MRI - IR - Claustrophobia
 
Moire Fringes (Artifact)InfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Moire fringes, moire
DESCRIPTION
Superimposed signals of different phases
REASON
Interferences
HELP
Surface coil, shimming
A moiré pattern is an interference pattern created for example when two grids are overlaid at an angle, or when they have slightly different mesh sizes. The human visual system creates an imaginary pattern of roughly horizontal dark and light bands, the moiré pattern that appears to be superimposed on the lines.
In MRI, the appearance of moiré fringes can be caused by a variety of reasons e.g., inhomogeneity of the main magnetic field caused by a defect shielding (interference with RF pulses), interferences produced by aliasing, and interferences of echoes from different excitation modes (with different echo times).
mri safety guidance
Image Guidance
Take spin echo-based techniques, or a surface coil. This artifact is often sensitive to shimming or susceptibility gradients.
spacer
 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
Moiré pattern
   by en.wikipedia.org    
Moire Fringes
   by www.mritutor.org    
MRI Resources 
Collections - Universities - Education - Jobs pool - Contrast Enhanced MRI - Bioinformatics
 
DixonInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The Dixon technique is a MRI method used for fat suppression and/or fat quantification. The difference in magnetic resonance frequencies between fat and water-bound protons allows the separation of water and fat images based on the chemical shift effect.
This imaging technique is named after Dixon, who published in 1984 the basic idea to use phase differences to calculate water and fat components in postprocessing. Dixon's method relies on acquiring an image when fat and water are 'in phase', and another in 'opposed phase' (out of phase). These images are then added together to get water-only images, and subtracted to get fat-only images. Therefore, this sequence type can deliver up to 4 contrasts in one measurement: in phase, opposed phase, water and fat images. An additional benefit of Dixon imaging is that source images and fat images are also available to the diagnosing physician.
The original two point Dixon sequence (number of points means the number of images acquired at different TE) had limited possibilities to optimize the echo time, spatial resolution, slice thickness, and scan time; but Dixon based fat suppression can be very effective in areas of high magnetic susceptibility, where other techniques fail. This insensitivity to magnetic field inhomogeneity and the possibility of direct image-based water and fat quantification have currently generated high research interests and improvements to the basic method (three point Dixon).
The combination of Dixon with gradient echo sequences allows for example liver imaging with 4 image types in one breath hold. With Dixon TSE/FSE an excellent fat suppression with high resolution can be achieved, particularly useful in imaging of the extremities.
For low bandwidth imaging, chemical shift correction of fat images can be made before recombination with water images to produce images free of chemical shift displacement artifacts. The need to acquire more echoes lengthens the minimum scan time, but the lack of fat saturation pulses extends the maximum slice coverage resulting in comparable scan time.
spacer

• View the DATABASE results for 'Dixon' (8).Open this link in a new window

 
Further Reading:
  Basics:
Separation of fat and water signal in magnetic resonanace imaging
2011   by www.diva-portal.org    
Direct Water and Fat Determination in Two-Point Dixon Imaging
April 2013   by scholarship.rice.edu    
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
Measurement of Fat/Water Ratios in Rat Liver Using 3DThree-Point Dixon MRI
2004   by www.civm.duhs.duke.edu    
  News & More:
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
mDIXON being developed to simplify and accelerate liver MRI
September 2010   by incenter.medical.philips.com    
MRI Resources 
Spine MRI - Diffusion Weighted Imaging - MRI Reimbursement - Jobs pool - Functional MRI - MRI Technician and Technologist Schools
 
previous      6 - 10 (of 10)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]