The term in phase refers to an image in which the signals from two spectral components (such as fat and water) add constructively in a voxel.
T1 weighted in phase images are acquired by a gradient echo-based technique with a short TR, TE and a high flip angle greater than 60 degrees.
To some degree, in phasesequences are more sensitive to detection of focal hepatic lesions than out of phase for evaluating reduced lesion-to-liver contrast, but the choice for a T1 gradient echo sequence is still based on field strength, advanced imaging techniques (breath hold imaging), and physician preference.
The incoherent gradient echo (gradient spoiled) type of sequence uses a continuous shifting of the RF pulse to spoil the remaining transverse magnetization. The transverse magnetization is destroyed by a magnetic field gradient.
This results in a T1 weighted image. Spoiling can be accomplished by RF or a gradient.
Gradient spoiling occurs after each echo by using strong gradients in the slice-select direction after the frequency encoding and before the next RF pulse. Because spins in different locations in the magnet thereby experience a variety of magnetic field strengths, they will precess at differing frequencies; as a consequence they will quickly become dephased. Magnetic field gradients are not very efficient at spoiling the transverse steady state. To be effective, the spins must be forced to precess far enough to become phased randomly with respect to the RF excitation pulse. In clinical MRI machines, the field gradients are set up in such a way that they increase and decrease relative to the center of the magnet; the magnetic field at the magnet 'isocenter' does not change.
The T1 weighting increases with the flip angle and
the T2* weighting increases with echo time (TE). Typical repetition time (TR) are 30-500 ms and TE less than 15 ms.
Prepulses are prior to the excitation. To optimize, this is usually as short as possible. The time from the prepulse to the center of K-space (K0) is the prepulse delay time, also known as the inversion time (TI). Prepulses are more effective if the flip angle is kept as short as possible to values such as 10 to 30 ms.
A pulse sequence is a preselected set of defined RF and gradient pulses, usually repeated many times during a scan, wherein the time interval between pulses and the amplitude and shape of the gradient waveforms will control NMR signal reception and affect the characteristics of the MR images. Pulse sequences are computer programs that control all hardware aspects of the MRI measurement process.
Usual to describe pulse sequences, is to list the repetition time (TR), the echo time (TE), if using inversion recovery, the inversion time (TI) with all times given in milliseconds, and in case of a gradient echo sequence, the flip angle. For example, 3000/30/1000 would indicate an inversion recovery pulse sequence with TR of 3000 msec., TE of 30 msec., and TI of 1000 msec.
Specific pulse sequence weightings are dependent on the field strength, the manufacturer and the pathology.