Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gradient Coil' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient Coil' found in 2 terms [] and 20 definitions []
previous     16 - 20 (of 22)     next
Result Pages : [1]  [2 3 4 5]
Searchterm 'Gradient Coil' was also found in the following services: 
spacer
Resources  (1)  Forum  (3)  
 
MRI EquipmentInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
The MRI equipment consists of following components:
The magnet generates the magnetic field.
Shim coils make the magnetic field homogeneous.
Radio frequency coils transmit the radio signal into the body part being imaged.
Receiver coils detect the returning radio signals.
Gradient coils provide spatial localization of the signals.
Shielding coils produce a magnetic field that cancels the field from primary coils in regions where it is not desired.
The computer reconstructs the signals into the image.
The MRI scanner room is shielded by a faraday shield.
Different cooling systems cool the magnet, the scanner room and the technique room.

Better MRI equipment and software design along with the latest information technology improves system maintenance and overall communication. Software and digital imaging and communications in medicine (DICOM) compatibility allows to network into hospital databases, helps to modify pulse sequences, data post processing, and archiving via picture archiving and communication system (PACS).

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Radiography
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Ultrasound System Performance
spacer
 
• Related Searches:
    • Magnet
    • Receiver
    • Radio Frequency Coil
    • Hardware
    • Field Strength
 
Further Reading:
  News & More:
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
MRI safety targeted as new group offers credentialing test
Monday, 12 January 2015   by www.modernhealthcare.com    
Audio/Video System helps patients relax during MRI scans
Monday, 8 December 2014   by news.thomasnet.com    
Dräger introduces anaesthesia system for MRI environment
Wednesday, 12 December 2007   by www.mtbeurope.info    
MRI Resources 
Used and Refurbished MRI Equipment - MRI Reimbursement - Contrast Agents - Pediatric and Fetal MRI - Service and Support - Knee MRI
 
Magnetic ForcesMRI Resource Directory:
 - MRI Accidents -
 
Forces can result from the interaction of magnetic fields. Pulsed magnetic field gradients can interact with the main magnetic field during the MRI scan, to produce acoustic noise through the gradient coil.
Magnetic fields attract ferromagnetic objects with forces, which can be a lethal danger if one is hit by an unrestrained object in flight. One could also be trapped between the magnet and a large unrestrained ferromagnetic object or the object could damage the MRI machine.
Access control and personnel awareness are the best preventions of such accidents. The attraction mechanism for ferromagnetic objects is that the magnetic field magnetizes the iron. This induced magnetization reacts with the gradient of the magnetic field to produce an attraction toward the strongest area of the field. The details of this interaction are very dependent on the shape and composition of the attracted object. There is a very rapid increase of force as one approaches a magnet. There is also a torque or twisting force on objects, e.g. a long cylinder (such as a pen or an intracranial aneurysm clip) will tend to align along the magnet's field lines. The torque increases with field strength while the attraction increases with field gradient.
Depending on the magnetic saturation of the object, attraction is roughly proportional to object mass. Motion of conducting objects in magnetic fields can induce eddy currents that can have the effect of opposing the motion.

See also Duty Cycle.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer

• View the DATABASE results for 'Magnetic Forces' (4).Open this link in a new window

 
Further Reading:
  Basics:
How strong are magnets?
   by my.execpc.com    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
Imaging chain faces regulators after inmate, guard get stuck to MRI machine
Friday, 1 December 2023   by healthimaging.com    
Measuring magnetic force field distributions in microfluidic devices: Experimental and numerical approaches
Saturday, 2 December 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
New imaging project for new applications in cancer diagnostics
Monday, 27 March 2017   by www.news-medical.net    
MRI Resources 
Blood Flow Imaging - Colonography - Implant and Prosthesis - Mass Spectrometry - Services and Supplies - Education
 
Maxwell CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A particular kind of gradient coil, commonly used to create magnetic field gradients along the direction of the main magnetic field. The maxwell coil consists of a pair of coils separated by 1.73 times their radius. Current flows in the opposite sense in the two coils, and produces a very linear gradient.
spacer

• View the DATABASE results for 'Maxwell Coil' (3).Open this link in a new window

Searchterm 'Gradient Coil' was also found in the following services: 
spacer
Resources  (1)  Forum  (3)  
 
Oscillating Gradient System
 
A gradient system, which changes the readout gradient sinusoidally by connecting a capacitor to the self inductance generated by the gradient coil. Oscillating gradient systems were initially used in the development of EPI.
This electrical oscillating circuit can be driven with minimal power to generate the gradient amplitudes and switching frequencies required for echo planar imaging (EPI).
Disadvantages are that it is not possible to use any arbitrary trapezoidal gradient wave form as can be used in standard MRI. Also, the gradients are inflexible and cannot be used to create other ultrafast sequences and beside, nonlinear sampling of the MR signal is required.
spacer

• View the DATABASE results for 'Oscillating Gradient System' (2).Open this link in a new window

MRI Resources 
MRCP - Health - Sequences - NMR - Service and Support - Journals
 
Paired Saddle CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
Pairs of saddle coils (such as the Golay coils) are used as the x- and y-axis of gradient coils and as extremity coils. This configuration produces a very linear, homogeneous magnetic field along its central axis.
 
Images, Movies, Sliders:
 Anatomic Imaging of the Shoulder  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 MRI - Anatomic Imaging of the Ankle 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Paired Saddle Coil' (2).Open this link in a new window

 
Further Reading:
  Basics:
High-Resolution Uniform MR Imaging of Finger Joints Using a Dedicated RF Coil at 3 Tesla
Sunday, 31 January 2010   by www.ncbi.nlm.nih.gov    
MRI Resources 
Cochlear Implant - Pacemaker - Raman Spectroscopy - Implant and Prosthesis pool - Contrast Agents - MRI Technician and Technologist Career
 
previous      16 - 20 (of 22)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]