Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'HIS' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'HIS' found in 1 term [] and 429 definitions []
previous     86 - 90 (of 430)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'HIS' was also found in the following services: 
spacer
News  (375)  Resources  (57)  Forum  (303)  
 
MagnetForum -
related threads
 
A magnet is by definition an object with magnetic properties (magnetism) that attracts iron and produces a magnetic field. It can be a permanent magnet or an electromagnet.
Permanent magnets do not rely upon outside influences to generate their field. In permanent magnets are the atoms and molecules ordered in long range. The specific electron configuration and the distance of the atoms is what lead to this long range ordering. The electrons exist in a lower energy state if they all have the same orientation. Magnetic domains can be likened to microscopic neighborhoods in which there is a strong reinforcing interaction between particles, resulting in a high degree of order. The greater the degree of ordering within and between domains, the greater the resulting field will be. Long range ordering is one of the hallmarks of a ferromagnetic material.
A current carrying conductor for example a piece of wire, produces a magnetic field that encircles the wire. An electromagnet, in its simplest form, is a wire that has been coiled into one or more loops. This coil is known as a solenoid. The more loops of wire and the greater the current, the stronger the field will be.
Superconducting magnets are a special type of electromagnets, often used in MRI machines with high field strength.
spacer
 
• Related Searches:
    • Magnetization
    • Permanent Magnet
    • MRI Equipment
    • Alignment
    • Quench
 
Further Reading:
  Basics:
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Philips Signs Research Agreement to Explore New Magnet Technologies
Monday, 5 December 2022   by www.itnonline.com    
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Magnetic seeds used to heat and kill cancer
Tuesday, 1 February 2022   by www.sciencedaily.com    
Harvard Scientists Create Nanoscale MRI
Monday, 28 April 2014   by www.meddeviceonline.com    
How Academic Research Solved the Puzzle of MRI and CAT Scanning
Monday, 21 April 2014   by www.engineering.com    
MRI Resources 
Breast MRI - Education pool - Functional MRI - Directories - Stent - Shoulder MRI
 
Magnetic ForcesMRI Resource Directory:
 - MRI Accidents -
 
Forces can result from the interaction of magnetic fields. Pulsed magnetic field gradients can interact with the main magnetic field during the MRI scan, to produce acoustic noise through the gradient coil.
Magnetic fields attract ferromagnetic objects with forces, which can be a lethal danger if one is hit by an unrestrained object in flight. One could also be trapped between the magnet and a large unrestrained ferromagnetic object or the object could damage the MRI machine.
Access control and personnel awareness are the best preventions of such accidents. The attraction mechanism for ferromagnetic objects is that the magnetic field magnetizes the iron. This induced magnetization reacts with the gradient of the magnetic field to produce an attraction toward the strongest area of the field. The details of this interaction are very dependent on the shape and composition of the attracted object. There is a very rapid increase of force as one approaches a magnet. There is also a torque or twisting force on objects, e.g. a long cylinder (such as a pen or an intracranial aneurysm clip) will tend to align along the magnet's field lines. The torque increases with field strength while the attraction increases with field gradient.
Depending on the magnetic saturation of the object, attraction is roughly proportional to object mass. Motion of conducting objects in magnetic fields can induce eddy currents that can have the effect of opposing the motion.

See also Duty Cycle.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer

• View the DATABASE results for 'Magnetic Forces' (4).Open this link in a new window

 
Further Reading:
  Basics:
How strong are magnets?
   by my.execpc.com    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
Imaging chain faces regulators after inmate, guard get stuck to MRI machine
Friday, 1 December 2023   by healthimaging.com    
Measuring magnetic force field distributions in microfluidic devices: Experimental and numerical approaches
Saturday, 2 December 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
New imaging project for new applications in cancer diagnostics
Monday, 27 March 2017   by www.news-medical.net    
MRI Resources 
MRA - Guidance - Databases - Jobs - MRI Centers - Breast Implant
 
Magnetic Resonance SpectroscopyMRI Resource Directory:
 - Spectroscopy pool -
 
(MRS / MRSI - Magnetic Resonance Spectroscopic Imaging) A method using the NMR phenomenon to identify the chemical state of various elements without destroying the sample. MRS therefore provides information about the chemical composition of the tissues and the changes in chemical composition, which may occur with disease processes.
Although MRS is primarily employed as a research tool and has yet to achieve widespread acceptance in routine clinical practice, there is a growing realization that a noninvasive technique, which monitors disease biochemistry can provide important new information for the clinician.
The underlying principle of MRS is that atomic nuclei are surrounded by a cloud of electrons, which very slightly shield the nucleus from any external magnetic field. As the structure of the electron cloud is specific to an individual molecule or compound, then the magnitude of this screening effect is also a characteristic of the chemical environment of individual nuclei.
In view of the fact that the resonant frequency is proportional to the magnetic field that it experiences, it follows that the resonant frequency will be determined not only by the external applied field, but also by the small field shift generated by the electron cloud. This shift in frequency is called the chemical shift (see also Chemical Shift). It should be noted that chemical shift is a very small effect, usually expressed in ppm of the main frequency. In order to resolve the different chemical species, it is therefore necessary to achieve very high levels of homogeneity of the main magnetic field B0. Spectra from humans usually require shimming the magnet to approximately one part in 100. High resolution spectra of liquid samples demand a homogeneity of about one part in 1000.
In addition to the effects of factors such as relaxation times that can affect the NMR signal, as seen in magnetic resonance imaging, effects such as J-modulation or the transfer of magnetization after selective excitation of particular spectral lines can affect the relative strengths of spectral lines.
In the context of human MRS, two nuclei are of particular interest - H-1 and P-31. (PMRS - Proton Magnetic Resonance Spectroscopy) PMRS is mainly employed in studies of the brain where prominent peaks arise from NAA, choline containing compounds, creatine and creatine phosphate, myo-inositol and, if present, lactate; phosphorus 31 MR spectroscopy detects compounds involved in energy metabolism (creatine phosphate, adenosine triphosphate and inorganic phosphate) and certain compounds related to membrane synthesis and degradation. The frequencies of certain lines may also be affected by factors such as the local pH. It is also possible to determine intracellular pH because the inorganic phosphate peak position is pH sensitive.
If the field is uniform over the volume of the sample, "similar" nuclei will contribute a particular frequency component to the detected response signal irrespective of their individual positions in the sample. Since nuclei of different elements resonate at different frequencies, each element in the sample contributes a different frequency component. A chemical analysis can then be conducted by analyzing the MR response signal into its frequency components.

See also Spectroscopy.
spacer

• View the DATABASE results for 'Magnetic Resonance Spectroscopy' (8).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Spectroscopy' (3).Open this link in a new window.
 
Further Reading:
  News & More:
Accuracy of Proton Magnetic Resonance Spectroscopy in Distinguishing Neoplastic From Non-neoplastic Brain Lesions
Saturday, 2 December 2023   by www.cureus.com    
Searchterm 'HIS' was also found in the following services: 
spacer
News  (375)  Resources  (57)  Forum  (303)  
 
Magnetism
 
Magnetic forces are fundamental forces that arise due to the movement of electrical charge. Maxwell's equations describe the origin and behavior of the fields that govern these forces. Thus, magnetism is seen whenever electrically charged particles are in motion. This can arise either from movement of electrons in an electric current, resulting in 'electromagnetism', or from the quantum-mechanical orbital motion (there is no orbital motion of electrons around the nucleus like planets around the sun, but there is an 'effective electron velocity') and spin of electrons, resulting in what are known as 'permanent magnets'.
The physical cause of the magnetism of objects, as distinct from electrical currents, is the atomic magnetic dipole. Magnetic dipoles, or magnetic moments, result on the atomic scale from the two kinds of movement of electrons. The first is the orbital motion of the electron around the nucleus this motion can be considered as a current loop, resulting in an orbital dipole magnetic moment along the axis of the nucleus. The second, much stronger, source of electronic magnetic moment is due to a quantum mechanical property called the spin dipole magnetic moment.
Gauss (G) and tesla (T) are units to define the intensity of magnetic fields. One tesla is equivalent to 10 000 gauss.
Typically, the field strength of MRI scanners is between 0.15 T and 3 T.

See also Diamagnetism, Paramagnetism, Superparamagnetism, and Ferromagnetism.
spacer

• View the DATABASE results for 'Magnetism' (18).Open this link in a new window


• View the NEWS results for 'Magnetism' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
  News & More:
What affects the strength of a magnet?
   by my.execpc.com    
MRI Resources 
Quality Advice - Artifacts - Contrast Enhanced MRI - PACS - Jobs pool - Crystallography
 
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
MRI Resources 
IR - Calculation - Jobs - Mass Spectrometry - Breast MRI - MRI Technician and Technologist Career
 
previous      86 - 90 (of 430)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 September 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]