Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Image' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Image' found in 19 terms [] and 434 definitions []
previous     91 - 95 (of 453)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Image' was also found in the following services: 
spacer
News  (255)  Resources  (73)  Forum  (129)  
 
Minimum Intensity Projection
 
(MINIP) A projection image, which is obtained from a 3D data set by selecting the minimum intensity along lines or rays that cut through the 3D image volume. This function is used as a postprocessing method for black blood MRA images.
spacer
MRI Resources 
Guidance - Health - Corporations - Developers - Education pool - Examinations
 
Navigator Technique
 
The navigator technique measures with an additional quick MR prepulse the position, of e.g. the diaphragm before data collecting. Similar respiratory conditions of the patient can be identified and used to synchronize image data acquisition so that respiration induced image blurring is minimized by either respiratory ordered phase encoding or respiratory gating.
The prepulse sequence images a small area perpendicular to the structure, which is moving. The contrast of the interface between the diaphragm and the lung should be high to permit easy automatic detection. After data acquisition, the position of the interface is automatically recorded and imaging data are only accepted when the position of the interface falls within a range of prespecified values.
This technique has the advantage of greater accuracy than other respiratory gating (therefore used for coronary angiography) and has no need for additional sensing MRI equipment, as the MR system itself provides it.
spacer

• View the DATABASE results for 'Navigator Technique' (5).Open this link in a new window

MRI Resources 
Claustrophobia - Brain MRI - Resources - Cochlear Implant - Anatomy - Universities
 
Nuclear Magnetic Resonance ImagingMRI Resource Directory:
 - NMR -
 
Creation of images of objects such as the body by use of the nuclear magnetic resonance phenomenon. The immediate practical application involves imaging the distribution of hydrogen nuclei (protons) in the body. The image brightness in a given region depends on the spin density and the relaxation times, with their relative importance determined by the particular imaging technique employed. Image brightness is also affected by motion such as blood flow.

See also Zeugmatography and Magnetic Resonance Imaging MRI.
spacer

• View the NEWS results for 'Nuclear Magnetic Resonance Imaging' (1).Open this link in a new window.
 
Further Reading:
  News & More:
New quantum sensing technique allows high-resolution nuclear magnetic resonance spectroscopy
Wednesday, 17 June 2020   by phys.org    
Searchterm 'Image' was also found in the following services: 
spacer
News  (255)  Resources  (73)  Forum  (129)  
 
Partial Fourier Technique
 
The partial Fourier technique is a modification of the Fourier transformation imaging method used in MRI in which the symmetry of the raw data in k-space is used to reduce the data acquisition time by acquiring only a part of k-space data.
The symmetry in k-space is a basic property of Fourier transformation and is called Hermitian symmetry. Thus, for the case of a real valued function g, the data on one half of k-space can be used to generate the data on the other half.
Utilization of this symmetry to reduce the acquisition time depends on whether the MRI problem obeys the assumption made above, i.e. that the function being characterized is real.
The function imaged in MRI is the distribution of transverse magnetization Mxy, which is a vector quantity having a magnitude, and a direction in the transverse plane. A convenient mathematical notation is to use a complex number to denote a vector quantity such as the transverse magnetization, by assigning the x'-component of the magnetization to the real part of the number and the y'-component to the imaginary part. (Sometimes, this mathematical convenience is stretched somewhat, and the magnetization is described as having a real component and an imaginary component. Physically, the x' and y' components of Mxy are equally 'real' in the tangible sense.)
Thus, from the known symmetry properties for the Fourier transformation of a real valued function, if the transverse magnetization is entirely in the x'-component (i.e. the y'-component is zero), then an image can be formed from the data for only half of k-space (ignoring the effects of the imaging gradients, e.g. the readout- and phase encoding gradients).
The conditions under which Hermitian symmetry holds and the corrections that must be applied when the assumption is not strictly obeyed must be considered.
There are a variety of factors that can change the phase of the transverse magnetization:
Off resonance (e.g. chemical shift and magnetic field inhomogeneity cause local phase shifts in gradient echo pulse sequences. This is less of a problem in spin echo pulse sequences.
Flow and motion in the presence of gradients also cause phase shifts.
Effects of the radio frequency RF pulses can also cause phase shifts in the image, especially when different coils are used to transmit and receive.
Only, if one can assume that the phase shifts are slowly varying across the object (i.e. not completely independent in each pixel) significant benefits can still be obtained. To avoid problems due to slowly varying phase shifts in the object, more than one half of k-space must be covered. Thus, both sides of k-space are measured in a low spatial frequency range while at higher frequencies they are measured only on one side. The fully sampled low frequency portion is used to characterize (and correct for) the slowly varying phase shifts.
Several reconstruction algorithms are available to achieve this. The size of the fully sampled region is dependent on the spatial frequency content of the phase shifts. The partial Fourier method can be employed to reduce the number of phase encoding values used and therefore to reduce the scan time. This method is sometimes called half-NEX, 3/4-NEX imaging, etc. (NEX/NSA). The scan time reduction comes at the expense of signal to noise ratio (SNR).
Partial k-space coverage is also useable in the readout direction. To accomplish this, the dephasing gradient in the readout direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened.
This is often used in gradient echo imaging to reduce the echo time (TE). The benefit is at the expense in SNR, although this may be partly offset by the reduced echo time. Partial Fourier imaging should not be used when phase information is eligible, as in phase contrast angiography.

See also acronyms for 'partial Fourier techniques' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Fourier Technique' (6).Open this link in a new window

MRI Resources 
Supplies - Stimulator pool - Crystallography - Resources - NMR - Most Wanted
 
Phase Contrast AngiographyMRI Resource Directory:
 - MRA -
 
(PCA) With this method images of the blood flow-velocity (or any other movement of tissue) are produced. The MRI signal contains both amplitude and phase information. The phase information can be used with subtraction of images with and without a velocity encoding gradient. The signal will be directly proportional to the velocity because of the relation between blood flow-velocity and signal intensity.
This is the strength of PCA, complete suppression of stationary tissue (no velocity - no signal), the direct velocity of flow is being imaged, while in TOF (Inflow) angiography, tissue with short T1 (fat or methaemoglobin) might be visualized.
The strength of the gradient determines the sensitivity to flow. It is set by setting the aliasing or encoding velocity (VENC). Unfortunately, phase sensitization can only be acquired along one axis at a time. Therefore, phase contrast angiographic techniques tend to be 4 times slower than TOF techniques with the same matrix.

See also Phase Contrast Sequence, Magnetic Resonance Angiography, Contrast Enhanced Magnetic Resonance Angiography, Flow Effects and Flow Quantification.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Contrast Angiography' (8).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
  News & More:
MR–ANGIOGRAPHY(.pdf)
MRI Resources 
MRI Training Courses - Portals - MRI Accidents - Nerve Stimulator - Diffusion Weighted Imaging - Examinations
 
previous      91 - 95 (of 453)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 1 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]