Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'MY' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'MY' found in 3 terms [] and 45 definitions []
previous     21 - 25 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'MY' was also found in the following services: 
spacer
News  (92)  Resources  (45)  Forum  (146)  
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.
spacer
 
• Related Searches:
    • Free Induction Decay
    • Incoherent Gradient Echo (Gradient Spoiled)
    • Spoiled Gradient Echo Sequence
    • Short Repetition Techniques
    • Incoherent Gradient Echo (RF Spoiled)
Searchterm 'MY' was also found in the following services: 
spacer
Radiology  (20) Open this link in a new windowUltrasound  (38) Open this link in a new window
Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Positive contrast agents cause a reduction in the T1 relaxation time (increased signal intensity on T1 weighted images). They (appearing bright on MRI) are typically small molecular weight compounds containing as their active element Gadolinium, Manganese, or Iron. All of these elements have unpaired electron spins in their outer shells and long relaxivities.
Some typical contrast agents as gadopentetate dimeglumine, gadoteridol, and gadoterate meglumine are utilized for the central nervous system and the complete body; mangafodipir trisodium is specially used for lesions of the liver and gadodiamide for the central nervous system.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide (SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides (USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons (perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.

The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide (USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.

See also Adverse Reaction and Nephrogenic Systemic Fibrosis.

See also the related poll result: 'The development of contrast agents in MRI is'
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradContrast Agents,  Safety of Contrast Agents
spacer
Medical-Ultrasound-Imaging.comUltrasound Contrast Agents,  Ultrasound Contrast Agent Safety
spacer

• View the DATABASE results for 'Contrast Agents' (122).Open this link in a new window


• View the NEWS results for 'Contrast Agents' (25).Open this link in a new window.
 
Further Reading:
  Basics:
Analysis of MRI contrast agents
Thursday, 17 November 2022   by www.sciencedaily.com    
New guidelines urge caution on use of contrast agents during MR scans
Tuesday, 8 August 2017   by www.dotmed.com    
New Study Sheds Light on Safety of Gadolinium-Based Contrast Agents
Wednesday, 29 November 2017   by www.empr.com    
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Manganese-based MRI contrast agents: past, present and future
Friday, 4 November 2011   by www.ncbi.nlm.nih.gov    
  News & More:
Brain imaging method may aid mild traumatic brain injury diagnosis
Tuesday, 16 January 2024   by parkinsonsnewstoday.com    
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors
Thursday, 18 January 2024   by www.dovepress.com    
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
Tuesday, 11 January 2022   by pubmed.ncbi.nlm.nih.gov    
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
Gadopiclenol: positive results for Phase III clinical trials
Monday, 29 March 2021   by www.pharmiweb.co    
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series
Friday, 4 December 2020   by www.dovepress.com    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Water-based non-toxic MRI contrast agents
Monday, 11 May 2020   by chemistrycommunity.nature.com    
New method to detect early-stage cancer identified by Georgia State, Emory research team
Friday, 7 February 2020   by www.eurekalert.org    
Researchers Brighten Path for Creating New Type of MRI Contrast Agent
Friday, 7 February 2020   by www.newswise.com    
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents
Wednesday, 15 November 2017   by www.eurekalert.org    
Sodium MRI May Show Biomarker for Migraine
Friday, 1 December 2017   by psychcentral.com    
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
MRI Resources 
Veterinary MRI - Functional MRI - MRI Technician and Technologist Jobs - MRI Physics - Journals - Contrast Enhanced MRI
 
Contrast Enhanced MRIInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Enhanced MRI -
 
Contrast enhanced MRI is a commonly used procedure in magnetic resonance imaging. The need to more accurately characterize different types of lesions and to detect all malignant lesions is the main reason for the use of intravenous contrast agents.
Some methods are available to improve the contrast of different tissues. The focus of dynamic contrast enhanced MRI (DCE-MRI) is on contrast kinetics with demands for spatial resolution dependent on the application. DCE-MR imaging is used for diagnosis of cancer (see also liver imaging, abdominal imaging, breast MRI, dynamic scanning) as well as for diagnosis of cardiac infarction (see perfusion imaging, cardiac MRI). Quantitative DCE-MRI requires special data acquisition techniques and analysis software.
Contrast enhanced magnetic resonance angiography (CE-MRA) allows the visualization of vessels and the temporal resolution provides a separation of arteries and veins. These methods share the need for acquisition methods with high temporal and spatial resolution.
Double contrast administration (combined contrast enhanced (CCE) MRI) uses two contrast agents with complementary mechanisms e.g., superparamagnetic iron oxide to darken the background liver and gadolinium to brighten the vessels. A variety of different categories of contrast agents are currently available for clinical use.
Reasons for the use of contrast agents in MRI scans are:
Relaxation characteristics of normal and pathologic tissues are not always different enough to produce obvious differences in signal intensity.
Pathology that is sometimes occult on unenhanced images becomes obvious in the presence of contrast.
Enhancement significantly increases MRI sensitivity.
In addition to improving delineation between normal and abnormal tissues, the pattern of contrast enhancement can improve diagnostic specificity by facilitating characterization of the lesion(s) in question.
Contrast can yield physiologic and functional information in addition to lesion delineation.
Imaging of arteries and veins with contrast enhanced angiography (CE MRA).

Common Indications:
Brain MRI : Preoperative/pretreatment evaluation and postoperative evaluation of brain tumor therapy, CNS infections, noninfectious inflammatory disease and meningeal disease.
Spine MRI : Infection/inflammatory disease, primary tumors, drop metastases, initial evaluation of syrinx, postoperative evaluation of the lumbar spine: disk vs. scar.
Breast MRI : Detection of breast cancer in case of dense breasts, implants, malignant lymph nodes, or scarring after treatment for breast cancer, diagnosis of a suspicious breast lesion in order to avoid biopsy.

For Ultrasound Imaging (USI) see Contrast Enhanced Ultrasound at Medical-Ultrasound-Imaging.com. See also Blood Pool Agents, Myocardial Late Enhancement, Cardiovascular Imaging, Contrast Enhanced MR Venography, Contrast Resolution, Dynamic Scanning, Lung Imaging, Hepatobiliary Contrast Agents, Contrast Medium and MRI Guided Biopsy.
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Normal Lung Gd Perfusion MRI  Open this link in a new window
 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 
Radiology-tip.comradContrast Enhanced Computed Tomography
spacer
Medical-Ultrasound-Imaging.comContrast Enhanced Ultrasound,  Contrast Enhanced Doppler Imaging
spacer

• View the DATABASE results for 'Contrast Enhanced MRI' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced MRI' (8).Open this link in a new window.
 
Further Reading:
  Basics:
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
  News & More:
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Artificial Intelligence Processes Provide Solutions to Gadolinium Retention Concerns
Thursday, 30 January 2020   by www.itnonline.com    
Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis
Tuesday, 12 March 2019   by pubs.rsna.org    
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Novel Imaging Technique Improves Prostate Cancer Detection
Tuesday, 6 January 2015   by health.ucsd.edu    
New oxygen-enhanced MRI scan 'helps identify most dangerous tumours'
Thursday, 10 December 2015   by www.dailymail.co.uk    
All-organic MRI Contrast Agent Tested In Mice
Monday, 24 September 2012   by cen.acs.org    
A groundbreaking new graphene-based MRI contrast agent
Friday, 8 June 2012   by www.nanowerk.com    
Searchterm 'MY' was also found in the following services: 
spacer
News  (92)  Resources  (45)  Forum  (146)  
 
Coronary Angiography with D-TaggingMRI Resource Directory:
 - Cardiovascular Imaging -
 
(MRI-CA) Coronary angiography with dobutamine stress tagging (MR images are taken after the heart has been stressed by using a medication called dobutamine). Investigational noninvasive imaging as a diagnostic tool for evaluating stenosis, anatomy and flow effects in coronary arteries with dobutamine stress.

For Ultrasound Imaging (USI) see Stress Echocardiogram at Medical-Ultrasound-Imaging.com.
spacer

• View the DATABASE results for 'Coronary Angiography with D-Tagging' (3).Open this link in a new window

Searchterm 'MY' was also found in the following services: 
spacer
Radiology  (20) Open this link in a new windowUltrasound  (38) Open this link in a new window
Delay Alternating with Nutation for Tailored ExcitationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DANTE) A technique used to place a saturation band over e.g. the myocardium. This technique includes spatial modulation of magnetization complementary and delays alternating with nutations for tailored excitation, followed by the application of a cine or real-time imaging. Because the saturated magnetization pattern moves with the atoms of the tissue, the cardiac motion shows up as deformations in the grid pattern in the resulting imaging sequence.
spacer
MRI Resources 
Developers - Stimulator pool - Absorption and Emission - Spine MRI - Examinations - Case Studies
 
previous      21 - 25 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]