Controlling the frequencyspectrum (bandwidth) of a RF pulse (via tailoring) while imposing a magnetic field gradient on spins, such that only a desired region will have an appropriate resonant frequency to be excited.
Originally used to excite all but a desired region; now often used to select only a desired region, such as a plane, for excitation. Used without simultaneous magnetic field gradients, tailored RF pulses can be used to selectively excite a particular spectral line or group of lines. RF and gradient pulse combinations can be designed to select both spatial regions and spectral frequencies.
MR imaging techniques in which the image is built up from successive lines through the object. In various schemes, the lines are isolated by oscillating magnetic field gradients or selective excitation, and then the NMR signals from the selected line are encoded for position by detecting the FID or spin echo in the presence of a magnetic field gradient along the line; the Fourier transformation of the detected signal then yields the distribution of emitted NMR signal along the line.