MR imaging technique in which the image of an object is built up from successive planes in the object. In various schemes, the planes are selected by oscillating magnetic field gradients or selective excitation.
MR imaging techniques in which the image is built from successive point positions in the object. In various schemes, the points are isolated by oscillating magnetic field gradients (sensitive point) or shaped magnetic fields.
Process by which regions of tissue are selectively sampled to produce spectra from defined volumes in space. These methods may be employed to sample a single region in space (single voxel method) or multiple regions simultaneously (multivoxel methods). The spatial selectivity can be achieved by a variety of methods including surface coils, surface coils in conjunction with RF gradient methods, or RF pulses in combination with switched magnetic field gradients, for example, volume-selective excitation. An indirect method of achieving spatial selectivity is the destruction of coherence of the magnetization in regions that lie outside the region of interest. A variety of spatial encoding schemes have been employed for multivoxel localization. See Chemical shift imaging.
Searchterm 'Magnetic Field Gradient' was also found in the following services:
A form of a spin echo produced by three pulse RF sequences, consisting of two RF pulses following an initial exciting RF pulse. The stimulated echo appears at a time delay after the third pulse equal to the interval between the first two pulses. Although classically produced with 90° pulses, any RF pulses other than an ideal 180° can produce a stimulated echo.
The intensity of the echo depends in part on the T1 relaxation time because the excitation is 'stored' as longitudinal magnetization between the second and third RF pulses. For example, use of stimulated echoes with spatially selective excitation with orthogonalmagnetic field gradients permits volume-selective excitation for spectroscopic localization.
Image Guidance
Artifacts may appear as a series of fine lines. A narrow bandwidth causes a wide read window, which allows the stimulated echo to be incorporated into the image data. This can be supported by increasing the received bandwidth, which would narrow the read window, thus not incorporating the extraneous echo. Another help would be to change the first echo time, which may change the spacing of the stimulated echoes to outside that of the read window for the secondecho.