Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Measurement Field' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Measurement Field' found in 1 term [] and 3 definitions [], (+ 14 Boolean[] results
previous     6 - 10 (of 18)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Measurement Field' was also found in the following service: 
spacer
Resources  (2)  
 
Magnetic Source ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Functional MRI -
 
(MSI) The combination of biomagnetic field detection and MR imaging into a merged data set. Most applications of MSI involve the combined use of MRI and measurement of magnetic fields created by electric currents in the brain, so-called magnetoencephalography MEG.
MEG allows calculation of the source of the measured biomagnetic fields, and thereby localization of many regional brain functions, such as mapping of the sensorimotor, auditory and visual cortex and also localization of epileptogenic foci. The MEG coordinate system is defined by anatomical landmarks, which are easily identified also with MRI, making it possible to align the 3D MEG data with the 3D MR image data. The resulting magnetic source images show the spatial relationships between the functional area provided by MEG and the neighboring anatomy and pathology, both provided by MRI.
Cardiac applications of MSI are also being explored. The electric currents in the myocardium create extrathoracic magnetic fields and the source of these fields may be calculated by the same principles as those used in MEG. Possible cardiac applications include mapping of arrhythmogenic sites prior to ablation therapy.
spacer

• View the NEWS results for 'Magnetic Source Imaging' (2).Open this link in a new window.
 
Further Reading:
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
MRI Resources 
MR Guided Interventions - Colonography - Guidance - Safety Products - Jobs - Used and Refurbished MRI Equipment
 
Phase Contrast SequenceMRI Resource Directory:
 - Sequences -
 
(PC) Phase contrast sequences are the basis of MRA techniques utilizing the change in the phase shifts of the flowing protons in the region of interest to create an image. Spins that are moving along the direction of a magnetic field gradient receive a phase shift proportional to their velocity.
In a phase contrast sequence two data sets with a different amount of flow sensitivity are acquired. This is usually accomplished by applying gradient pairs, which sequentially dephase and then rephase spins during the sequence. Both 2D and 3D acquisition techniques can be applied with phase contrast MRA.
The first data set is acquired with a flow compensated sequence, i. e. without flow sensitivity. The second data set is acquired with a flow sensitive sequence. The amount of flow sensitivity is controlled by the strength of the bipolar gradient pulse pair, which is incorporated into the sequence. Stationary tissue undergoes no effective phase change after the application of the two gradients. Caused by the different spatial localization of flowing blood to stationary tissue, it experiences a different size of the second bipolar gradient compared to the first. The result is a phase shift.
The raw data from the two data sets are subtracted. By comparing the phase of signals from each location in the two sequences the exact amount of motion induced phase change can be determined to have a map where pixel brightness is proportional to spatial velocity.
Phase contrast images represent the signal intensity of the velocity of spins at each point within the field of view. Regions that are stationary remain black while moving regions are represented as grey to white.
The phase shift is proportional to the spin's velocity, and this allows the quantitative assessment of flow velocities. The difference MRI signal has a maximum value for opposite directions. This velocity is typically referred to as venc, and depends on the pulse amplitude and distance between the gradient pulse pair. For velocities larger than venc the difference signal is decreased constantly until it gets zero. Therefore, in a phase contrast angiography it is important to correctly set the venc of the sequence to the maximum flow velocity which is expected during the measurement. High venc factors of the PC angiogram (more than 40 cm/sec) will selectively image the arteries (PCA - arteriography), whereas a venc factor of 20 cm/sec will perform the veins and sinuses (PCV or MRV - venography).

See also Flow Quantification, Contrast Enhanced MR Venography, Time of Flight Angiography, Time Resolved Imaging of Contrast Kinetics.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Contrast Sequence' (5).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
MRI Resources 
Mobile MRI - Image Quality - Homepages - MRI Accidents - Process Analysis - Safety Training
 
Rectangular Field of View
 
(RFOV) A different field of view (the scanned region) in the frequency and phase encoding directions that means the data acquisition with fewer measurement lines. Because there are fewer rows than columns, a rectangular image is obtained. To reduce the FOV in phase encoding direction (foldover direction) saves scan time by decreasing signal but invariable spatial resolution.
Also called HFI or undersampling.
mri safety guidance
Image Guidance
If the scanned object is oval, e.g. head or abdomen, a rectangular FOV is an easy to use scan parameter to reduce the scan time without loss of resolution.
spacer

• View the DATABASE results for 'Rectangular Field of View' (2).Open this link in a new window

Searchterm 'Measurement Field' was also found in the following service: 
spacer
Resources  (2)  
 
Signal to Noise Ratio
 
(SNR or S/N) The signal to noise ratio is used in MRI to describe the relative contributions to a detected signal of the true signal and random superimposed signals ('background noise') - a criterion for image quality.
One common method to increase the SNR is to average several measurements of the signal, on the expectation that random contributions will tend to cancel out. The SNR can also be improved by sampling larger volumes (increasing the field of view and slice thickness with a corresponding loss of spatial resolution) or, within limits, by increasing the strength of the magnetic field used. Surface coils can also be used to improve local signal intensity. The SNR will depend, in part, on the electrical properties of the sample or patient being studied. The SNR increases in proportion to voxel volume (1/resolution), the square root of the number of acquisitions (NEX), and the square root of the number of scans (phase encodings). SNR decreases with the field of view squared (FOV2) and wider bandwidths. See also Signal Intensity and Spin Density.

Measuring SNR:
Record the mean value of a small ROI placed in the most homogeneous area of tissue with high signal intensity (e.g. white matter in thalamus). Calculate the standard deviation for the largest possible ROI placed outside the object in the image background (avoid ghosting/aliasing or eye movement artifact regions).
The SNR is then:
Mean Signal/Standard Deviation of Background Noise
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'Signal to Noise Ratio' (48).Open this link in a new window


• View the NEWS results for 'Signal to Noise Ratio' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
Picture-Perfect Particles Enhance MRI Signal
Friday, 13 April 2012   by cen.acs.org    
Researchers design 'intelligent' metamaterial to make MRIs affordable and accessible
Tuesday, 5 November 2019   by phys.org    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
MRI Resources 
MRI Technician and Technologist Jobs - MRI Physics - Equipment - Resources - Calculation - MRI Training Courses
 
Radio Frequency Pulse
 
A pulse is a rapid change in the amplitude of a RF signal or in some characteristic a RF signal, e.g., phase or frequency, from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. For radio frequencies near the Larmor frequency, it will result in rotation of the macroscopic magnetization vector. The amount of rotation will depend on the strength and duration of the RF pulse; commonly used examples are 90° (p/2) and 180° (p) pulses.
RF pulses are used in the spin preparation phase of a pulse sequence, which prepare the spin system for the ensuing measurements. In many sequences, RF pulses are also applied to the volumes outside the one to be measured. This is the case when spatial presaturation techniques are used to suppress artifacts. Many preparation pulses are required in MR spectroscopy to suppress signal from unwanted spins. The simplest preparation pulse making use of spectroscopic properties is a fat saturation pulse, which specifically irradiates the patient at the fat resonant frequency, so that the magnetization coming from fat protons is tilted into the xy-plane where it is subsequently destroyed by a strong dephasing gradient.
The frequency spectrum of RF pulses is critical as it determines the spatial extension and homogeneity over which the spin magnetization is influenced while a gradient field is applied.
spacer

• View the DATABASE results for 'Radio Frequency Pulse' (16).Open this link in a new window

 
Further Reading:
  News & More:
MRI Safety: Monitoring Body Temperature During MRI
Thursday, 4 August 2011   by www.diagnosticimaging.com    
MRI Resources 
Societies - Pacemaker - Musculoskeletal and Joint MRI - Coils - Research Labs - Jobs pool
 
previous      6 - 10 (of 18)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]