| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Out of Phase' found in 1 term [] and 17 definitions [], (+ 18 Boolean[] results
| 1 - 5 (of 36) nextResult Pages : [1] [2 3 4] [5 6 7 8] | | | | Searchterm 'Out of Phase' was also found in the following services: | | | | |
| | |
| |
|
Water and fat signals being in or out of phase result from the FFE method and the slight difference in resonance frequencies of the protons. It can cause black "outlining" of tissues and decrease in signal from voxel containing both water and fat. At 1.5 T, the water and fat signal are in phase when TE is an even multiple, and out of phase when TE is an odd multiple of 2.3 ms.
1.5T: OUT of PHASE = 2.3, 6.9, 11.5, 16.1, 20.7 ms
1.0T: OUT of PHASE = 3.5, 10.4, 17.3, 24.2 ms
0.5T: OUT of PHASE = 6.9, 20.7 ms
See also Opposed Phase Image, and Dixon. | | | | | | | • Share the entry 'Out of Phase': | | | | | | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Out of Phase' was also found in the following service: | | | | |
| | |
| |
|
Water and fat signals being in or out of phase result from the gradient echo method and the slight difference in resonance frequencies of the protons. At 1.5 T, the water and fat signal are in phase when TE is an even multiple, and out of phase when TE is an odd multiple of 2.3 ms. With FFE Imaging, it is often advisable to use a TE value equal or close to an in phase value.
1.5T: IN PHASE = 4.6, 9.2, 13.8, 18.4, 23.0 ms
1.0T: IN PHASE = 6.9, 13.8, 20.7, 27.6 ms
0.5T: IN PHASE = 13.8, 27.6 ms
See also Out of Phase and Dixon. | | | | • View the DATABASE results for 'In Phase' (25).
| | | • View the NEWS results for 'In Phase' (14).
| | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
(DE FGRE, Dual/FFE, DE FFE) Simultaneously acquired in and out of phase TE gradient echo images. To quantitatively measure the signal intensity differences between out of phase and in phase images the parameters should be the same except for the TE.
The chemical shift artifact appearing on the out-of-phase image allows for the detection of lipids in the liver or adrenal gland, such as diffuse fatty infiltration, focal fatty infiltration, focal fatty sparing, benign adrenocortical masses and intracellular lipids within a hepatocellar neoplasm, where spin echo and fat suppression techniques are not as sensitive. Specific pathologies that have been reported include liver lipoma, angiomyolipoma, myelolipoma, metastatic liposarcoma, teratocarcinoma, melanoma, haemorrhagic neoplasm and metastatic choriocarcinoma. | | | | | | • View the DATABASE results for 'Dual Echo Fast Gradient Echo' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Out of Phase' was also found in the following services: | | | | |
| | |
| |
|
An image in which the signal from two spectral components (such as fat and water) is 180° out of phase and leads to destructive interference in a voxel.
Since fat precesses slower than water, based on their chemical shift, their signals will decay and precess in the transverse plane at different frequencies. When the phase of the TE becomes opposed (180°), their combined signal intensities subtract with each other in the same voxel, producing a signal void or dark band at the fat/water interface of the tissues being examined.
Opposed phase gradient echo imaging for the abdomen is a lipid-type tissue sensitive sequence particularly for the liver and adrenal glands, which puts a signal intensity around abnormal water-based tissues or lesions that are fatty.
Due to the increased sensitivity of opposed phase, the tissue visualization increases the lesion-to-liver contrast and exhibits more signal intensity loss in tissues containing small amounts of lipids compared to a spin echo T1 with fat suppression.
Using an opposed phase gradient echo also provides the ability to differentiate various pathologies in the brain, including lipids, methaemoglobin, protein, calcifications and melanin.
See also Out of Phase, and Dixon. | | | | | | • View the DATABASE results for 'Opposed Phase Image' (5).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Out of Phase' was also found in the following service: | | | | |
| | |
| |
|
General MRI of the abdomen can consist of T1 or T2 weighted spin echo, fast spin echo ( FSE, TSE) or gradient echo sequences with fat suppression and contrast enhanced MRI techniques. The examined organs include liver, pancreas, spleen, kidneys, adrenals as well as parts of the stomach and intestine (see also gastrointestinal imaging). Respiratory compensation and breath hold imaging is mandatory for a good image quality.
T1 weighted sequences are more sensitive for lesion detection than T2 weighted sequences at 0.5 T, while higher field strengths (greater than 1.0 T), T2 weighted and spoiled gradient echo sequences are used for focal lesion detection.
Gradient echo in phase T1 breath hold can be performed as a dynamic series with the ability to visualize the blood distribution. Phases of contrast enhancement include the capillary or arterial dominant phase for demonstrating hypervascular lesions, in liver imaging the portal venous phase demonstrates the maximum difference between the liver and hypovascular lesions, while the equilibrium phase demonstrates interstitial disbursement for edematous and malignant tissues.
Out of phase gradient echo imaging for the abdomen is a lipid-type tissue sensitive sequence and is useful for the visualization of focal hepatic lesions, fatty liver (see also Dixon), hemochromatosis, adrenal lesions and renal masses.
The standards for abdominal MRI vary according to clinical sites based on sequence availability and MRI equipment.
Specific abdominal imaging coils and liver-specific contrast agents targeted to the healthy liver tissue improve the detection and localization of lesions.
See also Hepatobiliary Contrast Agents, Reticuloendothelial Contrast Agents, and Oral Contrast Agents.
For Ultrasound Imaging (USI) see Abdominal Ultrasound at Medical-Ultrasound-Imaging.com. | | | | | | • View the DATABASE results for 'Abdominal Imaging' (11).
| | | • View the NEWS results for 'Abdominal Imaging' (3).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
Assessment of Female Pelvic Pathologies: A Cross-Sectional Study Among Patients Undergoing Magnetic Resonance Imaging for Pelvic Assessment at the Maternity and Children Hospital, Qassim Region, Saudi Arabia Saturday, 7 October 2023 by www.cureus.com | | |
Higher Visceral, Subcutaneous Fat Levels Predict Brain Volume Loss in Midlife Wednesday, 4 October 2023 by www.neurologyadvisor.com | | |
Deep Learning Helps Provide Accurate Kidney Volume Measurements Tuesday, 27 September 2022 by www.rsna.org | | |
CT, MRI for pediatric pancreatitis interobserver agreement with INSPPIRE Friday, 11 March 2022 by www.eurekalert.org | | |
Clinical trial: Using MRI for prostate cancer diagnosis equals or beats current standard Thursday, 4 February 2021 by www.eurekalert.org | | |
Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review - Abstract Tuesday, 28 April 2015 by urotoday.com | | |
Nottingham scientists exploit MRI technology to assist in the treatment of IBS Thursday, 9 January 2014 by www.news-medical.net | | |
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries Thursday, 23 April 2009 by www.eurekalert.org | | |
MRI identifies 'hidden' fat that puts adolescents at risk for disease Tuesday, 27 February 2007 by www.eurekalert.org |
|
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |