Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Rapid Spin Echo' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Rapid Spin Echo' found in 0 term [] and 1 definition [], (+ 12 Boolean[] results
previous     6 - 10 (of 13)     next
Result Pages : [1]  [2 3]
Searchterm 'Rapid Spin Echo' was also found in the following services: 
spacer
News  (1)  Forum  (1)  
 
Turbo Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(TSE) A pulse sequence characterized by a series of rapidly applied 180° rephasing pulses and multiple echoes.

See Fast spin echo.
 
Images, Movies, Sliders:
 MRI Liver T2 TSE  Open this link in a new window
    
 Brain MRI Images Axial T2  Open this link in a new window
 Breast MRI 2 Transverse T1 001  Open this link in a new window
    
 
spacer
 
• Related Searches:
    • Breast MRI
    • Fast Spin Echo
    • Pulse, 180°
    • Pulse Sequence
    • Lumbar Spine MRI
 
Further Reading:
  Basics:
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
Advances in Magnetic Resonance Neuroimaging
Friday, 27 February 2009   by www.ncbi.nlm.nih.gov    
  News & More:
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
Comparison of Fast Spin-Echo Versus Conventional Spin-Echo MRI forEvaluating Meniscal Tears
June 2005   by www.ajronline.org    
MRI Resources 
MR Guided Interventions - Nerve Stimulator - Stimulator pool - Crystallography - Blood Flow Imaging - Pediatric and Fetal MRI
 
Diffusion Weighted SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Diffusion Weighted Imaging -
 
Diffusion weighted imaging can be performed similar to the phase contrast angiography sequence. The gradients must be increased in amplitude to depict the much slower motions of molecular diffusion in the body.
While a T1 weighted MRI pulse sequence is diffusion sensitive, a quantitative diffusion pulse sequence was introduced by Steijskal and Tanner. Its characteristic features are two strong symmetrical gradient lobes placed on either side of the 180° refocusing pulse in a spin echo sequence. These symmetrical gradient lobes have the sole purpose of enhancing dephasing of spins, thereby accelerating intravoxel incoherent motion (IVIM) signal loss.
Dephasing is proportional to the square of the time (diffusion time) during which the gradients are switched on and the strength of the applied gradient field. Therefore, the use of high field gradient systems with faster and more sensitive sequences, make diffusion weighting more feasible.
Areas in which the protons diffuse rapidly (swollen cells in early stroke, less restriction to diffusion) will show an increased signal when the echo is measured relative to areas in which diffusion is restricted. For increased accuracy of diffusion measurement and image enhancement, useful motion correction techniques such as navigator echo and other methods should be used. In addition to this, applying the b-value calculated by the strength and duration of motion probing gradients with a high rate of accuracy is very important.

See also Apparent Diffusion Coefficient, ADC Map, Lattice Index Map.
spacer

• View the DATABASE results for 'Diffusion Weighted Sequence' (6).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion-Weighted Imaging
   by spinwarp.ucsd.edu    
A Comparison of Methods for High-Spatial-Resolution Diffusion-weighted Imaging in Breast MRI
Tuesday, 25 August 2020   by pubs.rsna.org    
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
DWI-MRI helps breast cancer patients' chemotherapy response
Friday, 20 January 2023   by www.auntminnieeurope.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Hopkins researchers use diffusion MRI technique to monitor ultrasound uterine fibroid treatment
Monday, 8 August 2005   by www.eurekalert.org    
Diffusion-weighted MRI sensitive for metastasis in pelvic lymph nodes
Sunday, 15 June 2014   by www.2minutemedicine.com    
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
MRI Resources 
Education pool - Image Quality - Safety pool - Veterinary MRI - Homepages - Quality Advice
 
Liver ImagingForum -
related threadsMRI Resource Directory:
 - Liver Imaging -
 
Liver imaging can be performed with sonography, computed tomography (CT) and magnetic resonance imaging (MRI). Ultrasound is, caused by the easy access, still the first-line imaging method of choice; CT and MRI are applied whenever ultrasound imaging yields vague results. Indications are the characterization of metastases and primary liver tumors e.g., benign lesions such as focal nodular hyperplasia (FNH), adenoma, hemangioma and malignant lesions (cancer) such as hepatocellular carcinomas (HCC). The decision, which medical imaging modality is more suitable, MRI or CT, is dependent on the different factors. CT is less costly and more widely available; modern multislice scanners provide high spatial resolution and short scan times but has the disadvantage of radiation exposure.
With the introduction of high performance MR systems and advanced sequences the image quality of MRI for the liver has gained substantially. Fast spin echo or single shot techniques, often combined with fat suppression, are the most common T2 weighted sequences used in liver MRI procedures. Spoiled gradient echo sequences are used as ideal T1 weighted sequences for evaluating of the liver. The repetition time (TR) can be sufficiently long to acquire enough sections covering the entire liver in one pass, and to provide good signal to noise. The TE should be the shortest in phase echo time (TE), which provides strong T1 weighting, minimizes magnetic susceptibility effects, and permits acquisition within one breath hold to cover the whole liver. A flip angle of 80° provides good T1 weighting and less of power deposition and tissue saturation than a larger flip angle that would provide comparable T1 weighting.
Liver MRI is very dependent on the administration of contrast agents, especially when detection and characterization of focal lesions are the issues. Liver MRI combined with MRCP is useful to evaluate patients with hepatic and biliary disease.
Gadolinium chelates are typical non-specific extracellular agents diffusing rapidly to the extravascular space of tissues being cleared by glomerular filtration at the kidney. These characteristics are somewhat problematic when a large organ with a huge interstitial space like the liver is imaged. These agents provide a small temporal imaging window (seconds), after which they begin to diffuse to the interstitial space not only of healthy liver cells but also of lesions, reducing the contrast gradient necessary for easy lesion detection. Dynamic MRI with multiple phases after i.v. contrast media (Gd chelates), with arterial, portal and late phase images (similar to CT) provides additional information.
An additional advantage of MRI is the availability of liver-specific contrast agents (see also Hepatobiliary Contrast Agents). Gd-EOB-DTPA (gadoxetate disodium, Gadolinium ethoxybenzyl dimeglumine, EOVIST Injection, brand name in other countries is Primovist) is a gadolinium-based MRI contrast agent approved by the FDA for the detection and characterization of known or suspected focal liver lesions.
Gd-EOB-DTPA provides dynamic phases after intravenous injection, similarly to non-specific gadolinium chelates, and distributes into the hepatocytes and bile ducts during the hepatobiliary phase. It has up to 50% hepatobiliary excretion in the normal liver.
Since ferumoxides are not eliminated by the kidney, they possess long plasmatic half-lives, allowing circulation for several minutes in the vascular space. The uptake process is dependent on the total size of the particle being quicker for larger particles with a size of the range of 150 nm (called superparamagnetic iron oxide). The smaller ones, possessing a total particle size in the order of 30 nm, are called ultrasmall superparamagnetic iron oxide particles and they suffer a slower uptake by RES cells. Intracellular contrast agents used in liver MRI are primarily targeted to the normal liver parenchyma and not to pathological cells. Currently, iron oxide based MRI contrast agents are not marketed.
Beyond contrast enhanced MRI, the detection of fatty liver disease and iron overload has clinical significance due to the potential for evolution into cirrhosis and hepatocellular carcinoma. Imaging-based liver fat quantification (see also Dixon) provides noninvasively information about fat metabolism; chemical shift imaging or T2*-weighted imaging allow the quantification of hepatic iron concentration.

See also Abdominal Imaging, Primovistâ„¢, Liver Acquisition with Volume Acquisition (LAVA), T1W High Resolution Isotropic Volume Examination (THRIVE) and Bolus Injection.

For Ultrasound Imaging (USI) see Liver Sonography at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 Anatomic Imaging of the Liver  Open this link in a new window
      

 MRI Liver T2 TSE  Open this link in a new window
    
 
Radiology-tip.comradAbdomen CT,  Biliary Contrast Agents
spacer
Medical-Ultrasound-Imaging.comLiver Sonography,  Vascular Ultrasound Contrast Agents
spacer

• View the DATABASE results for 'Liver Imaging' (13).Open this link in a new window


• View the NEWS results for 'Liver Imaging' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Comparison of liver scintigraphy and the liver-spleen contrast in Gd-EOB-DTPA-enhanced MRI on liver function tests
Thursday, 18 November 2021   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
Elastography: A Useful Method in Depicting Liver Hardness
Thursday, 15 April 2010   by www.sciencedaily.com    
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
  News & More:
Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease
Saturday, 20 January 2024   by www.nature.com    
Even early forms of liver disease affect heart health, Cedars-Sinai study finds
Thursday, 8 December 2022   by www.eurekalert.org    
For monitoring purposes, AI-aided MRI does what liver biopsy does with less risk, lower cost
Wednesday, 28 September 2022   by radiologybusiness.com    
Perspectum: High Liver Fat (Hepatic Steatosis) Linked to Increased Risk of Hospitalization in COVID-19 Patients With Obesity
Monday, 29 March 2021   by www.businesswire.com    
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
Friday, 16 October 2015   by www.ncbi.nlm.nih.gov    
EORTC study aims to qualify ADC as predictive imaging biomarker in preoperative regimens
Monday, 4 January 2016   by www.eurekalert.org    
MRI effectively measures hemochromatosis iron burden
Saturday, 3 October 2015   by medicalxpress.com    
Total body iron balance: Liver MRI better than biopsy
Sunday, 15 March 2015   by www.eurekalert.org    
Searchterm 'Rapid Spin Echo' was also found in the following services: 
spacer
News  (1)  Forum  (1)  
 
Motion Probing Gradient
 
Many MR imaging techniques using Motion Probing Gradients (MPG's) such as Spin Echo (SE), Stimulated Echo (STE), Rapid Acquisition with Relaxation Enhancement (RARE), Turbo-SE, and SE-EPI (Echo Planar Imaging for Spin echo acquisition), Spiral imaging, and Projection reconstruction including PROPELLER are applicable to DWI. In diffusion weighted imaging, 2 MPG's are required. The MPG's are put symmetrically into both sides of a 180° or 90° RF pulse to change the direction of the magnetized spin in the X-Y plane for spin echo or stimulated echo acquisition.
spacer

• View the DATABASE results for 'Motion Probing Gradient' (2).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
MRI Resources 
Claustrophobia - Collections - Devices - Portals - Stimulator pool - Musculoskeletal and Joint MRI
 
Sample Imperfection (Artifact)InfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Sample imperfection
DESCRIPTION
Shifts of the signal in the phase encoding direction
REASON
Distorting the k-space trajectory, reduced bandwidth
HELP
Fat suppression, more excitations
Artifacts either by distorting the k-space trajectory (i.e. due to imperfect shimming) or as a consequence of the reduced bandwidth in the phase encode direction, commonly with EPI sequences.
While a standard spin warp-based sequence has an infinitely large bandwidth in the phase encode direction (about 1 or 2 kH), the bandwidth in EPI is related to the time between the gradient echoes (about a millisecond).
Hence even small frequency offsets can result in significant shifts of the signal in the phase encoding direction. Segmentation can introduce ghosting if there are significant difference in the amplitude and phase of the signal. This can be a particular problem when trying to acquire the segments in rapid succession.
mri safety guidance
Image Guidance
Suitable choices of excitation schemes and/or subsequent correction can help to reduce this artifact. The signal from fat can easily be offset by a large fraction of the FOV, and must be suppressed. The effect of frequency offsets can be reduced by collecting data with more than one excitation, which effectively increases the bandwidth in the phase encoding direction.
spacer
MRI Resources 
Corporations - Online Books - Sequences - Musculoskeletal and Joint MRI - Portals - Cochlear Implant
 
previous      6 - 10 (of 13)     next
Result Pages : [1]  [2 3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]