| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Susceptibility' found in 3 terms [] and 43 definitions []
| previous 26 - 30 (of 46) nextResult Pages : [1] [2 3 4 5 6 7 8 9 10] | | | | Searchterm 'Susceptibility' was also found in the following services: | | | | |
| | |
| |
|
Ferromagnetism is a phenomenon by which a material can exhibit a spontaneous magnetization: a net magnetic moment in the absence of an external magnetic field. More recently: a material is ferromagnetic, only if all of its magnetic ions add a positive contribution to the net magnetization (for differentiation to ferrimagnetic and antiferromagnetic materials). If some of the magnetic ions subtract from the net magnetization (if they are partially anti-aligned), then the material is ferrimagnetic. If the ions anti-align completely so as to have zero net magnetization, despite the magnetic ordering, then it is an antiferromagnet. All of these alignment effects only occur at temperatures below a certain critical temperature, called the Curie temperature (for ferromagnets and ferrimagnets) or the Néel temperature (for antiferromagnets). Typical ferromagnetic materials are iron, cobalt, and nickel.
In MRI ferromagnetic objects, even very small ones, as implants or incorporations distort the homogeneity of the main magnetic field and cause susceptibility artifacts. | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Field Strength' (123).
| | | • View the NEWS results for 'Field Strength' (2).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Short name: Gd-DTPA, generic name: Gadopentetate dimeglumine, chemical compound: Gadolinium-diethylenetriaminepentaacetic acid
Gadopentetate dimeglumine was introduced in 1981, as the first paramagnetic MRI contrast agent (ionic). The Gd-induced dipole dipole interactions lead to shortening of T1, which results in contrast enhancement on T1 weighted images. The used metal ion Gd3+ ( gadolinium) is toxic, and therefore bound in the renally excreted DTPA chelate, a very stable complex. The Gd-complex also induce susceptibility effects, as a result of the magnetic field gradient between the contrast agent in the blood vessels and the surrounding tissue, that lead to shortening of T2 or T2*.
Following intravenous administration, the compound is distributed rapidly in the extracellular space and is eliminated unchanged by glomerular filtration via the kidneys. Up to 6 hours, post injection an average of 83% of the dose is eliminated renal.
See also Magnevist®, Gadolinium and Contrast Agents. | | | | • View the DATABASE results for 'Gadopentetate Dimeglumine' (5).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Susceptibility' was also found in the following services: | | | | |
| | |
| |
|
Diamagnetism occurs only by a substance in the presence of an externally applied magnetic field. Diamagnetic contrast agents are complexes in which the metal ion (e.g., Zn, Bi and Ca) is diamagnetic.
Potential diamagnetic materials in gastrointestinal MRI:
A suspension of clay minerals (Kaopectate with kaolin, a common over the counter drug) can be used as a negative oral contrast agent caused by the diamagnetic properties.
By using this preparation as a gastrointestinal contrast agent e.g., in pancreas MRI or MRCP, the absence of signal is clearly visible in the stomach and duodenum.
Barium sulfate commonly used as an X-ray contrast agent has also been tested for use in abdominal imaging. The diamagnetic properties of the barium particles are caused by a susceptibility effect around them, the resulting signal loss is strengthening by a replacement of water protons with barium.
See also Diamagnetism. | | | | • View the DATABASE results for 'Gastrointestinal Diamagnetic Contrast Agents' (7).
| | | | |
| | | | | |
| |
|
Gastrointestinal (GI) superparamagnetic contrast agents are used in MRI to improve the visualization of e.g., the intestinal tract, the pancreas (see MRCP), etc.
Disadvantages are susceptibility artifacts e.g., dependent on delayed imaging or large volumes resulting in artifacts in the colon and distal small bowel loops related to higher concentration of the particles and absorption of the fluid.
Different types of MRI gastrointestinal superparamagnetic contrast agents:
•
Magnetite albumin microsphere
Usually gastrointestinal superparamagnetic contrast media consist of small iron oxide crystals (ferrites), which produce a signal reduction in the stomach and bowel after oral administration. The T2 shortening caused by these particles is produced from the local magnetic field inhomogeneities associated with the large magnetic moments of superparamagnetic particles. Ferrites are iron oxides of the general formula Fe203.MO, where M is a divalent metal ion and may be mixed with Fe3O4 in different preparations.
Ferrites can produce symptoms of nausea after oral administration, as well as flatulence and a transient rise in serum iron. Embedding in inert substances reduce side effects by decreasing the absorption and interaction with body tissues. Combining these contrast materials with polymers such as polyethylene glycol or cellulose, or with sugars such as dextrose, results in improved T1 and/or T2 relaxivity compared with that of the contrast agent alone.
See also Negative Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents, Relaxivity, and Combination Oral Contrast Agents. | | | | • View the DATABASE results for 'Gastrointestinal Superparamagnetic Contrast Agents' (6).
| | | | Further Reading: | Basics:
|
|
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |