Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'T1 Weighted Image' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'T1 Weighted Image' found in 1 term [] and 17 definitions [], (+ 14 Boolean[] results
previous     11 - 15 (of 32)     next
Result Pages : [1]  [2 3 4]  [5 6 7]
Searchterm 'T1 Weighted Image' was also found in the following services: 
spacer
News  (1)  Resources  (1)  Forum  (2)  
 
Lumbar Spine MRI
 
MRI of the lumbar spine, with its multiplanar 3 dimensional imaging capability, is currently the preferred modality for establishing a diagnosis. MRI scans and magnetic resonance myelography have many advantages compared with computed tomography and/or X-ray myelography in evaluating the lumbar spine. MR imaging scans large areas of the spine without ionizing radiation, is noninvasive, not affected by bone artifacts, provides vascular imaging capability, and makes use of safer contrast agents (gadolinium chelate).
Due to the high level of tissue contrast resolution, nerves and discs are clearly visible. MRI is excellent for detecting degenerative disease in the spine. Lumbar spine MRI accurately shows disc disease (prolapsed disc or slipped disc), the level at which disc disease occurs, and if a disc is compressing spinal nerves. Lumbar spine MRI depicts soft tissues, including the cauda equina, spinal cord, ligaments, epidural fat, subarachnoid space, and intervertebral discs. Loss of epidural fat on T1 weighted images, loss of cerebrospinal fluid signal around the dural sac on T2 weighted images and degenerative disc disease are common features of lumbar stenosis.

Common indications for MRI of the lumbar spine:
Neurologic deficits, evidence of radiculopathy, acute spinal cord compression (e.g., sudden bowel/bladder disturbance)
Suspected systemic disorders (primary tumors, drop metastases, osteomyelitis)
Postoperative evaluation of lumbar spine: disk vs. scar
Localized back pain with no radiculopathy (leg pain)

Lumbar spine imaging requires a special spine coil. often used whole spine array coils have the advantage that patients do not need other positioning if also upper parts of the spine should be scanned. Sagittal T1 and T2 weighted FSE sequences are the standard views. With multi angle oblique techniques individually oriented transverse images of each intervertebral disc at different angles can be obtained.

See also the related poll result: 'MRI will have replaced 50% of x-ray exams by'
 
Images, Movies, Sliders:
 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Related Searches:
    • MRI History
    • Contrast Agents
    • MRI Scan
    • Spine MRI
    • Multi Angle Oblique
 
Further Reading:
  Basics:
Lumbar Spine Stenosis: A Common Cause of Back and Leg Pain
   by www.aafp.org    
Spine imaging after lumbar disc replacement: pitfalls and current recommendations
Tuesday, 21 July 2009   by 7thspace.com    
  News & More:
Impact of patient-reported symptom information on lumbar spine MRI Interpretation
Monday, 25 January 2021   by www.eurekalert.org    
Lumbar spine MRI reports are too difficult for patients to understand
Friday, 29 March 2019   by www.eurekalert.org    
Inappropriate Ordering of Lumbar Spine Magnetic Resonance Imaging: Are Providers Choosing Wisely? -
Tuesday, 2 February 2016   by www.ajmc.com    
How Weight-Bearing MRIs Can Improve Care & Lower Costs While Meeting Milliman Criteria
Friday, 4 October 2013   by www.beckersspine.com    
Lumbar Diskal Cyst Containing Intervertebral Disk Materials
Tuesday, 1 November 2011   by www.orthosupersite.com    
A Study of the Morphology of Lumbar Discs in Sitting and Standing Positions Using a 0.5T Open- Configuration MRI(.pdf)
2001   by cds.ismrm.org    
MRI Resources 
Research Labs - Universities - Service and Support - Pathology - RIS - Liver Imaging
 
Magnetic Resonance Angiography MRAMRI Resource Directory:
 - MRA -
 
(MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography (MRA):
•
Detection of aneurysms and dissections
•
Evaluation of the vessel anatomy, including variants
•
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)

Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.

See also Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Angiogram
spacer
Medical-Ultrasound-Imaging.comVascular Ultrasound,  Intravascular Ultrasound
spacer

• View the DATABASE results for 'Magnetic Resonance Angiography MRA' (3).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Angiography MRA' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MR–ANGIOGRAPHY(.pdf)
  News & More:
3-D-printed model of stenotic intracranial artery enables vessel-wall MRI standardization
Friday, 14 April 2017   by www.eurekalert.org    
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
MR Angiography Highly Accurate In Detecting Blocked Arteries
Thursday, 1 February 2007   by www.sciencedaily.com    
MRI Resources 
Intraoperative MRI - Lung Imaging - Equipment - PACS - Knee MRI - Shoulder MRI
 
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
Searchterm 'T1 Weighted Image' was also found in the following services: 
spacer
News  (1)  Resources  (1)  Forum  (2)  
 
Magnevist®InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Magnevist® is a paramagnetic ionic contrast agent for use in magnetic resonance imaging. Contrast enhanced MRI with Magnevist® allows additional diagnostic information of tumors, inflammation and vascular lesions and the determination or differentiation of such lesions.
The contrast enhancing effect is produced by the di-N-methylglucamine salt of gadopentetate (Gd-DTPA), the gadolinium complex of diethylenetriamine pentaacetic acid. Magnevist® has the strongest effect on T1 weighted images, by increasing T1 signal intensity in tissues where Magnevist® has accumulated.

WARNING: NEPHROGENIC SYSTEMIC FIBROSIS Gadolinium-based contrast agents increase the risk for nephrogenic systemic fibrosis (NSF) in patients with acute or chronic severe renal insufficiency (glomerular filtration rate less than 30 mL/min/1.73m2), or acute renal insufficiency of any severity due to the hepato-renal syndrome or in the perioperative liver transplantation period.

See also Ionic Intravenous Contrast Agents and Gadopentetate Dimeglumine.
Drug Information and Specification
CENTRAL MOIETY
Gd3+
CONTRAST EFFECT
T1, Predominantly positive enhancement
r1=3.4, r2=3.8, B0=1.0T
PHARMACOKINETIC
Intravascular, extracellular, renal excretion
1960 mosm/kgH2O
CONCENTRATION
0.5 mol/L
DOSAGE
0.1-0.3 mmol/kg / 0.2-0.6 mL/kg
PREPARATION
Finished product
INDICATION
Neuro/whole body
DEVELOPMENT STAGE
For sale
DISTRIBUTOR
See below
PRESENTATION
Vials of 5, 10, 15, 20 and 100 mL bulk package
Pre-filled syringes of 10, 15 and 20 mL
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
USA, Canada
Magnevist®
for sale
Asia
Magnevist®
for sale
EU
Magnevist®
suspended
Turkey
Magnevist®, Magnograf
for sale
Australia
Magnevist®
for sale
spacer

• View the DATABASE results for 'Magnevist®' (7).Open this link in a new window

 
Further Reading:
  Basics:
Magnevist Prescription Drug Discount Sources
   by www.institutedc.org    
Important Drug Warning for Gadolinium-Based Contrast Agents
Wednesday, 12 September 2007   by www.ismrm.org    
MAGNEVIST ® (brand of gadopentetate dimeglumine) Injection - WARNING: NEPHROGENIC SYSTEMIC FIBROSIS
May 2009   by berlex.bayerhealthcare.com    
Magnevist Package Insert
2000
  News & More:
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
Gadolinium-containing contrast agents: removal of Omniscan and iv Magnevist, restrictions to the use of other linear agents
Friday, 5 January 2018   by www.gov.uk    
FDA Drug Safety Communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings
Tuesday, 19 December 2017   by www.fda.gov    
Spurious Hypocalcemia After Omniscan- or OptiMARK-Enhanced Magnetic Resonance Imaging: An Algorithm for Minimizing a False-Positive Laboratory Value
October 2004   by www.findarticles.com    
MRI Resources 
Intraoperative MRI - Contrast Agents - Education - Pediatric and Fetal MRI - Collections - MRI Training Courses
 
Paramagnetism
 
Paramagnetic materials attract and repel like normal magnets when subject to a magnetic field. This alignment of the atomic dipoles with the magnetic field tends to strengthen it, and is described by a relative magnetic permeability greater than unity. Paramagnetism requires that the atoms individually have permanent dipole moments even without an applied field, which typically implies a partially filled electron shell. In pure Paramagnetism (without an external magnetic field), these atomic dipoles do not interact with one another and are randomly oriented in the absence of an external field, resulting in zero net moment.
Paramagnetic materials in magnetic fields will act like magnets but when the field is removed, thermal motion will quickly disrupt the magnetic alignment. In general, paramagnetic effects are small (magnetic susceptibility of the order of 10-3 to 10-5).
In MRI, gadolinium (Gd) one of these paramagnetic materials is used as a contrast agent. Through interactions between the electron spins of the paramagnetic gadolinium and the water nuclei nearby, the relaxation rates (T1 and T2) of the water protons are increased (T1 and T2 times are decreased), causing an increase in signal on T1 weighted images.

See also contrast agents, magnetism, ferromagnetism, superparamagnetism, and diamagnetism.
spacer

• View the DATABASE results for 'Paramagnetism' (11).Open this link in a new window

 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
Paramagnetism
Wednesday, 23 November 2005   by en.wikipedia.org    
  News & More:
LEARNING CENTER FOR PARAMAGNETISM
2003   by www.naturesalternatives.com    
MRI Resources 
Diffusion Weighted Imaging - Homepages - Pediatric and Fetal MRI - Shoulder MRI - Examinations - Artifacts
 
previous      11 - 15 (of 32)     next
Result Pages : [1]  [2 3 4]  [5 6 7]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]