| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'T2 Weighted' found in 2 terms [] and 44 definitions []
| previous 11 - 15 (of 46) nextResult Pages : [1] [2 3 4 5 6 7 8 9 10] | | | | Searchterm 'T2 Weighted' was also found in the following services: | | | | |
| | |
| |
|
From Aurora Imaging Technology, Inc.;
The Aurora® 1.5T Dedicated Breast MRI System with Bilateral SpiralRODEO™ is the first and only FDA approved MRI device designed specifically for breast imaging. The Aurora System, which is already in clinical use at a growing number of leading breast care centers in the US, Europe, got in December 2006 also the approval from the State Food and Drug Administration of the People's Republic of China (SFDA).
'Some of the proprietary and distinguishing features of the Aurora System include: 1) an ellipsoid magnetic shim that provides coverage of both breasts, the chest wall and bilateral axillary lymph nodes; 2) a precision gradient coil with the high linearity required for high resolution spiral reconstruction;; 3) a patient-handling table that provides patient comfort and procedural utility; 4) a fully integrated Interventional System for MRI guided biopsy and localization; and 5) the user-friendly AuroraCAD™ computer-aided image display system designed to improve the accuracy and efficiency of diagnostic interpretations.'
Device Information and Specification
CONFIGURATION
Short bore compact
TE
From 5 ms for RODEO Plus to over 80 ms, 120 ms for T2 sequences
Around 0.02 sec for a 256x256 image, 12.4 sec for a 512 x 512 x 32 multislice set
20 - 36 cm, max. elliptical 36 x 44 cm
POWER REQUIREMENTS
150A/120V-208Y/3 Phase//60 Hz/5 Wire
| | | | | | | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast
are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo ( bTFE), Fast Imaging with Steady Precession ( TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG). | | | | | | • View the DATABASE results for 'Balanced Sequence' (5).
| | | | Further Reading: | News & More:
|
|
| |
| | | | | | | | Searchterm 'T2 Weighted' was also found in the following services: | | | | |
| | |
| |
|
( BOLD) In MRI the changes in blood oxygenation level are visible. Oxyhaemoglobin (the principal haemoglobin in arterial blood) has no substantial magnetic properties, but deoxyhaemoglobin (present in the draining veins after the oxygen has been unloaded in the tissues) is strongly paramagnetic. It can thus serve as an intrinsic paramagnetic contrast agent in appropriately performed brain MRI. The concentration and relaxation properties of deoxyhaemoglobin make it a susceptibility , e.g. T2 relaxation effective contrast agent with little effect on T1 relaxation.
During activation of the brain, the oxygen consumption of the local tissue increase by approximately 5% with that the oxygen tension will decrease. As a consequence, after a short period of time vasodilatation occurs, resulting in a local increase of blood volume and flow by 20 - 40%. The incommensurate change in local blood flow and oxygen extraction increases the local oxygen level.
By using T2 weighted gradient echo EPI sequences, which are highly susceptibility sensitive and fast enough to capture the three-dimensional nature of activated brain areas will show an increase in signal intensity as oxyhaemoglobin is diamagnetic and deoxyhaemoglobin is paramagnetic. Other MR pulse sequences, such as spoiled gradient echo pulse sequences are also used.
As the effects are subtle and of the order of 2% in 1.5 T MR imaging, sophisticated methodology, paradigms and data analysis techniques have to be used to consistently demonstrate the effect.
As the BOLD effect is due to the deoxygenated blood in the draining veins, the spatial localization of the region where there is increased blood flow resulting in decreased oxygen extraction is not as precisely defined as the morphological features in MRI. Rather there is a physiological blurring, and is estimated that the linear dimensions of the physiological spatial resolution of the BOLD phenomenon are around 3 mm at best. | | | | • View the DATABASE results for 'Blood Oxygenation Level Dependent Contrast' (6).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Brain imaging, magnetic resonance imaging of the head or skull, cranial magnetic resonance tomography (MRT), neurological MRI - they describe all the same radiological imaging technique for medical diagnostic.
Magnetic resonance imaging of the human brain includes the anatomic description and the detection of lesions. Special techniques like diffusion weighted imaging, functional magnetic resonance imaging ( fMRI) and spectroscopy provide also information about the function and chemical metabolites of the brain.
MRI provides detailed pictures of brain and nerve tissues in multiple planes without obstruction by overlying bones. Brain MRI is the procedure of choice for most brain disorders. It provides clear images of the brainstem and posterior brain, which are difficult to view on a CT scan. It is also useful for the diagnosis of demyelinating disorders (disorders such as multiple sclerosis (MS) that cause destruction of the myelin sheath of the nerve).
With this noninvasive procedure also the evaluation of blood flow and the flow of cerebrospinal fluid (CSF) is possible. Different MRA methods, also without contrast agents can show a venous or arterial angiogram. MRI can distinguish tumors, inflammatory lesions, and other pathologies from the normal brain anatomy. However, MRI scans are also used instead other methods to avoid the dangers of interventional procedures like angiography (DSA - digital subtraction angiography) as well as of repeated exposure to radiation as required for computed tomography (CT) and other X-ray examinations.
A ( birdcage) bird cage coil achieves uniform excitation and reception and is commonly used to study the brain. Usually a brain MRI procedure includes FLAIR, T2 weighted and T1 weighted sequences in two or three planes. See also Fetal MRI, Fluid Attenuation Inversion Recovery ( FLAIR), Perfusion Imaging and High Field MRI. See also Arterial Spin Labeling. | | | | | | | | • View the DATABASE results for 'Brain MRI' (14).
| | | • View the NEWS results for 'Brain MRI' (32).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
MRI Reveals Significant Brain Abnormalities Post-COVID Monday, 21 November 2022 by neurosciencenews.com | | |
Combining genetics and brain MRI can aid in predicting chances of Alzheimer's disease Wednesday, 29 June 2022 by www.sciencedaily.com | | |
Roundup: How Even Mild COVID Can Affect the Brain; This Many Daily Steps Improves Longevity; and More Friday, 11 March 2022 by baptisthealth.net | | |
A low-cost and shielding-free ultra-low-field brain MRI scanner Tuesday, 14 December 2021 by www.nature.com | | |
Large International Study Reveals Spectrum of COVID-19 Brain Complications Tuesday, 9 November 2021 by www.itnonline.com | | |
Brain MRI-Based Subtypes of MS Predict Disability Progression, Treatment Response Thursday, 13 May 2021 by www.neurologyadvisor.com | | |
New MRI method improves detection of disease changes in the brain's network Thursday, 11 June 2020 by www.compute.dtu.dk | | |
New NeuroCOVID Classification System Uses MRI to Categorize Patients Friday, 12 June 2020 by www.diagnosticimaging.com | | |
New MRI technique can 'see' molecular changes in the brain Thursday, 5 September 2019 by medicalxpress.com | | |
Talking therapy or medication for depression: Brain scan may help suggest better treatment Monday, 27 March 2017 by www.newsnation.in | | |
MRI identifies brain abnormalities in chronic fatigue syndrome patients Wednesday, 29 October 2014 by www.eurekalert.org | | |
MRIs Useful in Tracking Depression in MS Patients Tuesday, 1 July 2014 by www.hcplive.com | | |
Contrast agent linked with brain abnormalities on MRI Tuesday, 17 December 2013 by www.sciencecodex.com | | |
MRIs Reveal Signs of Brain Injuries Not Seen in CT Scans Tuesday, 18 December 2012 by www.sciencedaily.com | | |
Iron Deposits in the Brain May Be Early Indicator of MS Wednesday, 13 November 2013 by www.healthline.com | | |
Migraine Sufferers Have Thicker Brain Cortex Tuesday, 20 November 2007 by www.medicalnewstoday.com |
|
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |