Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Ultra' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Ultra' found in 4 terms [] and 80 definitions []
previous     16 - 20 (of 84)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
Searchterm 'Ultra' was also found in the following services: 
spacer
News  (116)  Resources  (62)  Forum  (8)  
 
Contrast Enhanced MR VenographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CEMRV) A 3D dynamic contrast enhanced magnetic resonance venogram with acquisition timing to account for the later arrival of the contrast agent in the venous system. The pulse sequence used, is an enhanced 3D fast gradient echo sequence, the same sequence that is used for MR angiography.

For Ultrasound Imaging (USI) see Venous Ultrasound at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer
MRI Resources 
Education - Societies - MRI Reimbursement - Knee MRI - Jobs pool - Sequences
 
Contrast Enhanced MRIInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Enhanced MRI -
 
Contrast enhanced MRI is a commonly used procedure in magnetic resonance imaging. The need to more accurately characterize different types of lesions and to detect all malignant lesions is the main reason for the use of intravenous contrast agents.
Some methods are available to improve the contrast of different tissues. The focus of dynamic contrast enhanced MRI (DCE-MRI) is on contrast kinetics with demands for spatial resolution dependent on the application. DCE-MR imaging is used for diagnosis of cancer (see also liver imaging, abdominal imaging, breast MRI, dynamic scanning) as well as for diagnosis of cardiac infarction (see perfusion imaging, cardiac MRI). Quantitative DCE-MRI requires special data acquisition techniques and analysis software.
Contrast enhanced magnetic resonance angiography (CE-MRA) allows the visualization of vessels and the temporal resolution provides a separation of arteries and veins. These methods share the need for acquisition methods with high temporal and spatial resolution.
Double contrast administration (combined contrast enhanced (CCE) MRI) uses two contrast agents with complementary mechanisms e.g., superparamagnetic iron oxide to darken the background liver and gadolinium to brighten the vessels. A variety of different categories of contrast agents are currently available for clinical use.
Reasons for the use of contrast agents in MRI scans are:
Relaxation characteristics of normal and pathologic tissues are not always different enough to produce obvious differences in signal intensity.
Pathology that is sometimes occult on unenhanced images becomes obvious in the presence of contrast.
Enhancement significantly increases MRI sensitivity.
In addition to improving delineation between normal and abnormal tissues, the pattern of contrast enhancement can improve diagnostic specificity by facilitating characterization of the lesion(s) in question.
Contrast can yield physiologic and functional information in addition to lesion delineation.
Imaging of arteries and veins with contrast enhanced angiography (CE MRA).

Common Indications:
Brain MRI : Preoperative/pretreatment evaluation and postoperative evaluation of brain tumor therapy, CNS infections, noninfectious inflammatory disease and meningeal disease.
Spine MRI : Infection/inflammatory disease, primary tumors, drop metastases, initial evaluation of syrinx, postoperative evaluation of the lumbar spine: disk vs. scar.
Breast MRI : Detection of breast cancer in case of dense breasts, implants, malignant lymph nodes, or scarring after treatment for breast cancer, diagnosis of a suspicious breast lesion in order to avoid biopsy.

For Ultrasound Imaging (USI) see Contrast Enhanced Ultrasound at Medical-Ultrasound-Imaging.com. See also Blood Pool Agents, Myocardial Late Enhancement, Cardiovascular Imaging, Contrast Enhanced MR Venography, Contrast Resolution, Dynamic Scanning, Lung Imaging, Hepatobiliary Contrast Agents, Contrast Medium and MRI Guided Biopsy.
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Normal Lung Gd Perfusion MRI  Open this link in a new window
 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 
Radiology-tip.comradContrast Enhanced Computed Tomography
spacer
Medical-Ultrasound-Imaging.comContrast Enhanced Ultrasound,  Contrast Enhanced Doppler Imaging
spacer

• View the DATABASE results for 'Contrast Enhanced MRI' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced MRI' (8).Open this link in a new window.
 
Further Reading:
  Basics:
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
  News & More:
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Artificial Intelligence Processes Provide Solutions to Gadolinium Retention Concerns
Thursday, 30 January 2020   by www.itnonline.com    
Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis
Tuesday, 12 March 2019   by pubs.rsna.org    
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Novel Imaging Technique Improves Prostate Cancer Detection
Tuesday, 6 January 2015   by health.ucsd.edu    
New oxygen-enhanced MRI scan 'helps identify most dangerous tumours'
Thursday, 10 December 2015   by www.dailymail.co.uk    
All-organic MRI Contrast Agent Tested In Mice
Monday, 24 September 2012   by cen.acs.org    
A groundbreaking new graphene-based MRI contrast agent
Friday, 8 June 2012   by www.nanowerk.com    
MRI Resources 
Bioinformatics - Diffusion Weighted Imaging - MRI Physics - Societies - Jobs - Quality Advice
 
DeviceForum -
related threadsInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
Magnetic resonance imaging (MRI) is based on the magnetic resonance phenomenon, and is used for medical diagnostic imaging since ca. 1977 (see also MRI History).
The first developed MRI devices were constructed as long narrow tunnels. In the meantime the magnets became shorter and wider. In addition to this short bore magnet design, open MRI machines were created. MRI machines with open design have commonly either horizontal or vertical opposite installed magnets and obtain more space and air around the patient during the MRI test.
The basic hardware components of all MRI systems are the magnet, producing a stable and very intense magnetic field, the gradient coils, creating a variable field and radio frequency (RF) coils which are used to transmit energy and to encode spatial positioning. A computer controls the MRI scanning operation and processes the information.
The range of used field strengths for medical imaging is from 0.15 to 3 T. The open MRI magnets have usually field strength in the range 0.2 Tesla to 0.35 Tesla. The higher field MRI devices are commonly solenoid with short bore superconducting magnets, which provide homogeneous fields of high stability.
There are this different types of magnets:
The majority of superconductive magnets are based on niobium-titanium (NbTi) alloys, which are very reliable and require extremely uniform fields and extreme stability over time, but require a liquid helium cryogenic system to keep the conductors at approximately 4.2 Kelvin (-268.8° Celsius). To maintain this temperature the magnet is enclosed and cooled by a cryogen containing liquid helium (sometimes also nitrogen).
The gradient coils are required to produce a linear variation in field along one direction, and to have high efficiency, low inductance and low resistance, in order to minimize the current requirements and heat deposition. A Maxwell coil usually produces linear variation in field along the z-axis; in the other two axes it is best done using a saddle coil, such as the Golay coil.
The radio frequency coils used to excite the nuclei fall into two main categories; surface coils and volume coils. The essential element for spatial encoding, the gradient coil sub-system of the MRI scanner is responsible for the encoding of specialized contrast such as flow information, diffusion information, and modulation of magnetization for spatial tagging.
An analog to digital converter turns the nuclear magnetic resonance signal to a digital signal. The digital signal is then sent to an image processor for Fourier transformation and the image of the MRI scan is displayed on a monitor.

For Ultrasound Imaging (USI) see Ultrasound Machine at Medical-Ultrasound-Imaging.com.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of' and 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradGamma Camera,  Linear Accelerator
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Real-Time Scanner
spacer

• View the DATABASE results for 'Device' (141).Open this link in a new window


• View the NEWS results for 'Device' (29).Open this link in a new window.
 
Further Reading:
  News & More:
small-steps-can-yield-big-energy-savings-and-cut-emissions-mris
Thursday, 27 April 2023   by www.itnonline.com    
Portable MRI can detect brain abnormalities at bedside
Tuesday, 8 September 2020   by news.yale.edu    
Point-of-Care MRI Secures FDA 510(k) Clearance
Thursday, 30 April 2020   by www.diagnosticimaging.com    
World's First Portable MRI Cleared by FDA
Monday, 17 February 2020   by www.medgadget.com    
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
Cheap, portable scanners could transform brain imaging. But how will scientists deliver the data?
Tuesday, 16 April 2019   by www.sciencemag.org    
The world's strongest MRI machines are pushing human imaging to new limits
Wednesday, 31 October 2018   by www.nature.com    
Kyoto University and Canon reduce cost of MRI scanner to one tenth
Monday, 11 January 2016   by www.electronicsweekly.com    
A transportable MRI machine to speed up the diagnosis and treatment of stroke patients
Wednesday, 22 April 2015   by medicalxpress.com    
Portable 'battlefield MRI' comes out of the lab
Thursday, 30 April 2015   by physicsworld.com    
Chemists develop MRI technique for peeking inside battery-like devices
Friday, 1 August 2014   by www.eurekalert.org    
New devices doubles down to detect and map brain signals
Monday, 23 July 2012   by scienceblog.com    
Searchterm 'Ultra' was also found in the following services: 
spacer
News  (116)  Resources  (62)  Forum  (8)  
 
FORTE 3.0Tâ„¢InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.isoltech.co.kr/english/product/30t.htm From ISOL Technology
'Ultra high field MR system, it's right close to you. FORTE 3.0T is the new standard for the future ultra high field MR system. If you are pushing the limits of your existing clinical MR scanner, the FORTE will surely take you to the next level of diagnostic imaging. FORTE is the core leader of the medical technology in the 21st century. Proving effects of fMRI that cannot be measured with MRI less than 2.0T.'
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
SYNCHRONIZATION
ECG/peripheral: Optional/yes, external trigger, respiratory gating
PULSE SEQUENCES
Spin echo, Gradient echo, Fast spin echo, Inversion recovery, 2D/3D Fast gradient echo sequences FLAIR/STIR, 2D/3D TOF
IMAGING MODES
2D/3D, T1, T2 and Diffusion//Perfusion imaging, MR Angiography package, Advanced EPI package, Multi-nuclei MR Spectroscopy package
FOV
40 cm
128 x 128, 256 x 256, 512 x 512, 1024 x 1024
BORE DIAMETER
or W x H
61 cm without body coil
MAGNET WEIGHT
12000 kg
H*W*D
260 x 220 x 235 cm
COOLING SYSTEM TYPE
Water-cooled coil and air-cooled amplifier
CRYOGEN USE
0.15 L/hr helium
STRENGTH
38 mT/m
5-GAUSS FRINGE FIELD
3.3 m / 5.2 m
Passive and active
spacer

• View the DATABASE results for 'FORTE 3.0T™' (2).Open this link in a new window

MRI Resources 
MRA - Claustrophobia - MRI Reimbursement - Musculoskeletal and Joint MRI - Shoulder MRI - Abdominal Imaging
 
FerumoxtranInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Short name: Ami 227, generic name: Ferumoxtran, (USPIO)
Ferumoxtran is a substance of the class of ultrasmall superparamagnetic iron oxide used as a lymph node specific contrast agent for MRI.
See also Combidex®, Sinerem® and Ultrasmall Superparamagnetic Iron Oxide.
Partner(s): Cytogen Corporation, National Cancer Institute. An approvable letter was received from the U.S. Food and Drug Administration for Combidex in June 2000. Advanced Magnetics, Inc. has submitted a complete response to the approvable letter received from the U.S. Food and Drug Administration, which was accepted by the FDA and assigned a user fee goal date of March 30, 2005. In Europe, a Dossier (the European equivalent of a NDA) was submitted by Advanced Magnetics' European partner, Guerbet SA, to the European Medicines Evaluations Agency in December 1999. (Sinerem® is the brand name for this USPIO in Europe manufactured by Guerbet, Combidex® by Advanced Magnetics for the U.S. market)
Advanced Magnetics, Inc. changed its name in July 2007 to AMAG Pharmaceuticals Inc.
spacer

• View the DATABASE results for 'Ferumoxtran' (3).Open this link in a new window

 
Further Reading:
  Basics:
Superparamagnetic Iron Oxide–enhanced MR Imaging of Head and Neck Lymph Nodes1
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
  News & More:
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
SPL Medical starts clinical trial with contrast agent ferrotran
Tuesday, 11 February 2020   by www.radboudumc.nl    
SPL Medical receives approval for Clinical Trial with contrast agent Ferrotran® in 10 top radiology centers.
Friday, 15 March 2019   by ferrotran.com    
Ultrasmall Superparamagnetic Particles of Iron Oxide-enhanced in vivo MRI of human atherosclerotic plaques.(.pdf)
MRI Resources 
MR Myelography - Blood Flow Imaging - Claustrophobia - Software - Safety pool - Guidance
 
previous      16 - 20 (of 84)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]