| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | 'Ultrasmall Superparamagnetic Iron Oxide' | |
Result : Searchterm 'Ultrasmall Superparamagnetic Iron Oxide' found in 1 term [] and 16 definitions []
| 1 - 5 (of 17) nextResult Pages : [1] [2 3 4] | | | | Searchterm 'Ultrasmall Superparamagnetic Iron Oxide' was also found in the following service: | | | | |
| | |
Ultrasmall Superparamagnetic Iron Oxide | |
| |
|
( USPIO) The class of the ultrasmall superparamagnetic iron oxide includes several chemically and pharmacologically very distinct materials, which may or may not be interchangeable for a specific use. Some ultrasmall SPIO particles (median diameter less than 50nm) are used as MRI contrast agents ( Sinerem®, Combidex®), e.g. to differentiate metastatic from inflammatory lymph nodes. USPIO shows also potential for providing important information about angiogenesis in cancer tumors and could possibly complement MRI helping physicians to identify dangerous arteriosclerosis plaques.
Because of the disadvantageous large T2*//T1 ratio, USPIO compounds are less suitable for arterial bolus contrast enhanced magnetic resonance angiography than gadolinium complexes. The tiny ultrasmall superparamagnetic iron oxides do not accumulate in the RES system as fast as larger particles, which results in a long plasma half-life.
USPIO particles, with a small median diameter (less than 10 nm), will accumulate in lymph nodes after an intravenous injection by e.g. direct transcapillary passage through endothelial venules. Once within the nodal parenchyma, phagocytic cells of the mononuclear phagocyte system take up the particles.
As a second way, USPIOs are subsequently taken up from then interstitium by lymphatic vessels and transported to regional lymph nodes. A lymph node with normal phagocytic function takes up a considerable amount and shows a reduction of the signal intensity caused by T2 shortening effects and magnetic susceptibility. Caused by the small uptake of the USPIOs in metastatic lymph nodes, they appear with less signal reduction, and permit the differentiation of healthy lymph nodes from normal-sized, metastatic nodes.
See also Superparamagnetic Contrast Agents, Superparamagnetic Iron Oxide, Very Small Superparamagnetic Iron Oxide Particles, Blood Pool Agents, Intracellular Contrast Agents. | | | | | • Share the entry 'Ultrasmall Superparamagnetic Iron Oxide': | | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Blood Pool Agents' (16).
| | | • View the NEWS results for 'Blood Pool Agents' (1).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide ( SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides ( USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons ( perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.
The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide ( USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.
See also Adverse Reaction and Nephrogenic Systemic Fibrosis.
See also the related poll result: ' The development of contrast agents in MRI is' | | | | | | | | | | | • View the DATABASE results for 'Contrast Agents' (122).
| | | • View the NEWS results for 'Contrast Agents' (25).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
Brain imaging method may aid mild traumatic brain injury diagnosis Tuesday, 16 January 2024 by parkinsonsnewstoday.com | | |
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors Thursday, 18 January 2024 by www.dovepress.com | | |
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging Tuesday, 27 September 2022 by www.pharmacytimes.com | | |
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol Saturday, 5 February 2022 by www.ncbi.nlm.nih.gov | | |
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles Tuesday, 11 January 2022 by pubmed.ncbi.nlm.nih.gov | | |
Manganese enhanced MRI provides more accurate details of heart function after a heart attack Tuesday, 11 May 2021 by www.news-medical.net | | |
Gadopiclenol: positive results for Phase III clinical trials Monday, 29 March 2021 by www.pharmiweb.co | | |
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series Friday, 4 December 2020 by www.dovepress.com | | |
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR Monday, 8 March 2021 by www.diagnosticimaging.com | | |
Water-based non-toxic MRI contrast agents Monday, 11 May 2020 by chemistrycommunity.nature.com | | |
New method to detect early-stage cancer identified by Georgia State, Emory research team Friday, 7 February 2020 by www.eurekalert.org | | |
Researchers Brighten Path for Creating New Type of MRI Contrast Agent Friday, 7 February 2020 by www.newswise.com | | |
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents Wednesday, 15 November 2017 by www.eurekalert.org | | |
Sodium MRI May Show Biomarker for Migraine Friday, 1 December 2017 by psychcentral.com | | |
A natural boost for MRI scans Monday, 21 October 2013 by www.eurekalert.org | | |
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging Tuesday, 28 June 2011 by scienceline.org |
|
| |
| | | Searchterm 'Ultrasmall Superparamagnetic Iron Oxide' was also found in the following service: | | | | |
| | |
| |
|
Short name: Ami 227, generic name: Ferumoxtran, (USPIO)
Ferumoxtran is a substance of the class of ultrasmall superparamagnetic iron oxide used as a lymph node specific contrast agent for MRI.
See also Combidex®, Sinerem® and Ultrasmall Superparamagnetic Iron Oxide.
Partner(s): Cytogen Corporation, National Cancer Institute.
An approvable letter was received from the U.S. Food and Drug Administration for Combidex in June 2000. Advanced Magnetics, Inc. has submitted a complete response to the approvable letter received from the U.S. Food and Drug Administration, which was accepted by the FDA and assigned a user fee goal date of March 30, 2005.
In Europe, a Dossier (the European equivalent of a NDA) was submitted by Advanced Magnetics' European partner, Guerbet SA, to the European Medicines Evaluations Agency in December 1999.
( Sinerem® is the brand name for this USPIO in Europe manufactured by Guerbet, Combidex® by Advanced Magnetics for the U.S. market)
Advanced Magnetics, Inc. changed its name in July 2007 to AMAG Pharmaceuticals Inc. | | | | • View the DATABASE results for 'Ferumoxtran' (3).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Contrast agent with a preferential intracellular distribution.
Intracellular agents (such as manganese derivatives and ultrasmall superparamagnetic iron oxide), exhibit a flow- and metabolism-dependent uptake. These properties may allow delayed imaging, similar to isotopic methods.
Phospholipid liposomes are rapidly sequestered by the cells in the reticuloendothelial system (RES), primarily in the liver. For imaging of the liver, liposomes may be labeled with MR contrast medium, both positive (T1-shortening) paramagnetic media, and negative (T2-shortening) superparamagnetic media.
Several other nonliposome MR contrast media are also taken up by the RES, e.g.:
Other MR contrast agents accumulate selectively in the hepatocytes, e.g.:
| | | | • View the DATABASE results for 'Intracellular Contrast Agents' (3).
| | | | Further Reading: | News & More:
|
|
| |
| | | | |
| | 1 - 5 (of 17) nextResult Pages : [1] [2 3 4] |
| |
|
| |
| Look Ups |
| |