Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Wrap Around Artifact' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Wrap Around Artifact' found in 1 term [] and 2 definitions [], (+ 2 Boolean[] results
1 - 5 (of 5)     
Result Pages : [1]
MRI Resources 
Pediatric and Fetal MRI - Journals - Devices - Portals - Colonography - Musculoskeletal and Joint MRI
 
Wrap Around ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
A wrap around artifact (also called backfolding artifact or aliasing artifact) is produced by inadequate sampling or digitization. Wrap around artifacts result from digitizing fewer than two samples per period in a periodic function. Aliasing can occur in MR imaging whenever the scanned area extends beyond the field of view. These areas extending beyond the field of view boundaries are aliased back into the image to appear at artifactual locations.
 
Images, Movies, Sliders:
 Breast MRI Transverse T1 Pre Contrast 001  Open this link in a new window
    
 
spacer
 
• Share the entry 'Wrap Around Artifact':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Field of View
    • Number of Excitations
    • Phase Encoding
    • Aliasing Artifact
    • Foldover Suppression
 
Further Reading:
  Basics:
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Stent - Mass Spectrometry - Devices - Pregnancy - Breast Implant - Colonography
 
Oversampling
 
Oversampling is the increase in data to avoid aliasing and wrap around artifacts. Aliasing is the incorrectly mapping of tissue signal from outside the FOV to a location inside the FOV. This is caused by the fact, that the acquired k-space frequency data is not sampled density enough.
Oversampling in frequency direction, done by increasing the sampling frequency, prevents this aliasing artifact. The proper frequency based on the sampling theorem (Shannon sampling theorem/Nyquist sampling theorem) must be at least twice the frequency of each frequency component in the incoming signal. All frequency components above this limit will be aliased to frequencies between zero and half of the sampling frequency and combined with the proper signal information, which creates the artifact. Oversampling creates a larger field of view, more data needs to be stored and processed, but this is for modern MRI systems not a real problem. Oversampling in phase direction (no phase wrap), to eliminate wrap around artifacts, by increasing the number of phase encoding steps, results in longer scan/processing times.
spacer

• View the DATABASE results for 'Oversampling' (10).Open this link in a new window

 
Further Reading:
  Basics:
The Basics of MRI
   by www.cis.rit.edu    
The Scientist and Engineer's Guide to Digital Signal Processing
   by www.dspguide.com    
MRI Resources 
Contrast Agents - Mass Spectrometry - MRI Reimbursement - Abdominal Imaging - Brain MRI - IR
 
Phase Encoding
 
The process of locating a MR signal by altering the phase of spins in one dimension with a pulsed magnetic field gradient along that dimension prior to the acquisition of the signal.
If a gradient field is briefly switched on and then off again at the beginning of the pulse sequence right after the radio frequency pulse, the magnetization of the external voxels will either precess faster or slower relative to those of the central voxels.
During readout of the signal, the phase of the xy-magnetization vector in different columns will thus systematically differ. When the x- or y- component of the signal is plotted as a function of the phase encoding step number n and thus of time n TR, it varies sinusoidally, fast at the left and right edges and slow at the center of the image. Voxels at the image edges along the phase encoding direction are thus characterized by a higher 'frequency' of rotation of their magnetization vectors than those towards the center.
As each signal component has experienced a different phase encoding gradient pulse, its exact spatial reconstruction can be specifically and precisely located by the Fourier transformation analysis. Spatial resolution is directly related to the number of phase encoding levels (gradients) used. The phase encoding direction can be chosen, e.g. whenever oblique MR images are acquired or when exchanging frequency and phase encoding directions to control wrap around artifacts.
spacer

• View the DATABASE results for 'Phase Encoding' (73).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
MRI Technician and Technologist Career - MRI Physics - Safety Training - Implant and Prosthesis - Movies - Corporations
 
Backfolding ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Backfolding, foldover, phase wrapping, wrap around
DESCRIPTION
Image wrap around
Backfolding always occurs due to wrong phase encoding caused by objects outside the planned FOV. Phase encoding gradients are scaled for the field of view only. Tissues outside the FOV do not get properly phase encoded relative to their actual position and 'wraps' into the opposite side of the image. The Backfolding artifact projects image contents which fall outside the imaging FOV back into the image; the back folded information thus reappearing on the other side of the image. In fact, information along the phase encoding direction can be viewed as projected onto a cylindrical screen with a circumference corresponding to the linear field of view dimension in the phase encoding direction.

See also Aliasing Artifact.
spacer

• View the DATABASE results for 'Backfolding Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Services and Supplies - MRI Accidents - Open Directory Project - Lung Imaging - Spectroscopy pool - Movies
 
Aliasing ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this MRI artifact.
Artifact Information
NAME
Aliasing, backfolding, foldover, phase wrapping, wrap around
DESCRIPTION
Image wrap around
Aliasing is an artifact that occurs in MR images when the scanned body part is larger than field of view (FOV). As a consequence of the acquired k-space frequencies not being sampled densely enough, whereby portions of the object outside of the desired FOV get mapped to an incorrect location inside the FOV. The cyclical property of the Fourier transform fills the missing data of the right side with data from behind the FOV of the left side and vice versa. This is caused by a too small number of samples acquired in, e.g. the frequency encoding direction, therefore the spectrums will overlap, resulting in a replication of the object in the x direction.
Aliasing in the frequency direction can be eliminated by twice as fast sampling of the signal or by applying frequency specific filters to the received signal.
A similar problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV. Phase encoding gradients are scaled for the field of view only, therefore tissues outside the FOV do not get properly phase encoded relative to their actual position and 'wraps' into the opposite side of the image.
mri safety guidance
Image Guidance
Use a larger FOV, RFOV or 3D Volume, apply presaturation pulses to the undesired tissue, adjust the position of the FOV, or select a small coil which will only receive signal from objects inside or near the coil. The number of phase encoding steps must be increased in phase direction, unfortunately resulting in longer scan times.
When this is not possible it can be corrected by oversampling the data. Aliasing is eliminated by Oversampling in frequency direction. No Phase Wrap (Foldover Suppression) options typically correct the phase encoding by doubling the field of view, doubling the number of phase encodes (to keep resolution constant) and halving the number of averages (to keep scan time constant) then discarding the additional data and processing the image within the desired field of view (but this is more time consuming).
Tissue outside this doubled area can be folded nevertheless into the image as phase wrap. In this case combine more than 2 number of excitations / number of signal averages with foldover suppression.
See also Aliasing, Foldover Suppression, Oversampling, and Artifact Reduction - Aliasing.
spacer

• View the DATABASE results for 'Aliasing Artifact' (11).Open this link in a new window

MRI Resources 
Examinations - Databases - Case Studies - Open Directory Project - Universities - Calculation
 
     1 - 5 (of 5)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 27 January 2025]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]