| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'dextran' found in 1 term [] and 12 definitions []
| previous 6 - 10 (of 13) nextResult Pages : [1] [2 3] | | | | | | |
| |
|
Resovist® is an organ-specific MRI contrast agent, used for the detection and characterization of especially small focal liver lesions.
Resovist® consists of superparamagnetic iron oxide ( SPIO) nanoparticles coated with carboxy dextran, which are accumulated by phagocytosis in cells of the reticuloendothelial system (RES) of the liver. The uptake of Resovist® Injection in the reticuloendothelial cells results in a decrease of the signal intensity of normal liver parenchyma on both T2- and T1 weighted images.
Most malignant liver tumors do not contain RES cells and therefore do not uptake the iron particles. The resulting imaging effect is an improved contrast between the tumor (bright) and the surrounding tissue (dark).
Resovist® can be injected as an intravenous bolus, which allows immediate imaging of the liver and reduces the overall examination time. A dynamic imaging strategy after bolus injection supports to characterize lesions.
In comprehensive clinical trials, it demonstrated an excellent safety profile.
In 2001, Resovist® was approved for the European market.
See also Superparamagnetic Iron Oxide.
Resovist® competed with Primovist™, the other liver imaging agent of Bayer Schering Pharma AG. Due to this reason, the production of Resovist® has been abandoned in 2009.
Drug Information and Specification T2/T1, Predominantly negative enhancement PHARMACOKINETIC RES-directed CONCENTRATION 0.5 mol Fe/L DOSAGE Less than 60 kg = 0.9 ml, greater than 60 kg = 1.4 ml PREPARATION Finished product PRESENTATION
Pre-filled syringes of 0.9 and 1.4 mL DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information TERRITORY TRADE NAME DEVELOPMENT STAGE DISTRIBUTOR Japan Resovist® approved - Australia Resovist® Approved - | | | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
(VSOP = very small superparamagnetic iron oxide particles) This new class of contrast agents with smaller particle size than SPIO offers advantages for MR angiography. SPIO particles are usually coated with an organic polymer such as dextran, carboxy dextran or polyethylene glycol, which limits the minimal overall particle size that can be obtained.
VSOP-C184 consists of an aqueous solution of superparamagnetic iron oxide particles with a citrate coating and the overall particle size of 4-8 nm.
Short name: VSOP-C184, central moiety: Fe, concentration: 29 g Fe/l, relaxivity: R1=20.1, R2=37.1, B0=0.94 T. | | | | | |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Blood Pool Agents' (16).
| | | • View the NEWS results for 'Blood Pool Agents' (1).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide ( SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides ( USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons ( perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.
The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide ( USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.
See also Adverse Reaction and Nephrogenic Systemic Fibrosis.
See also the related poll result: ' The development of contrast agents in MRI is' | | | | | | | | | | | • View the DATABASE results for 'Contrast Agents' (122).
| | | • View the NEWS results for 'Contrast Agents' (25).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
Brain imaging method may aid mild traumatic brain injury diagnosis Tuesday, 16 January 2024 by parkinsonsnewstoday.com | | |
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors Thursday, 18 January 2024 by www.dovepress.com | | |
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging Tuesday, 27 September 2022 by www.pharmacytimes.com | | |
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol Saturday, 5 February 2022 by www.ncbi.nlm.nih.gov | | |
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles Tuesday, 11 January 2022 by pubmed.ncbi.nlm.nih.gov | | |
Manganese enhanced MRI provides more accurate details of heart function after a heart attack Tuesday, 11 May 2021 by www.news-medical.net | | |
Gadopiclenol: positive results for Phase III clinical trials Monday, 29 March 2021 by www.pharmiweb.co | | |
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series Friday, 4 December 2020 by www.dovepress.com | | |
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR Monday, 8 March 2021 by www.diagnosticimaging.com | | |
Water-based non-toxic MRI contrast agents Monday, 11 May 2020 by chemistrycommunity.nature.com | | |
New method to detect early-stage cancer identified by Georgia State, Emory research team Friday, 7 February 2020 by www.eurekalert.org | | |
Researchers Brighten Path for Creating New Type of MRI Contrast Agent Friday, 7 February 2020 by www.newswise.com | | |
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents Wednesday, 15 November 2017 by www.eurekalert.org | | |
Sodium MRI May Show Biomarker for Migraine Friday, 1 December 2017 by psychcentral.com | | |
A natural boost for MRI scans Monday, 21 October 2013 by www.eurekalert.org | | |
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging Tuesday, 28 June 2011 by scienceline.org |
|
| |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Ferucarbotran' (4).
| | | | |
| | | | |
| | | |
|
| |
| Look Ups |
| |