Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'mra' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 MRA            Magnetic Resonance Angiography 
Searchterm 'mra' was found in the Abbreviation Register. 
Result : Searchterm 'mra' found in 2 terms [] and 57 definitions []
1 - 5 (of 59)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
Searchterm 'mra' was also found in the following services: 
spacer
News  (15)  Resources  (18)  Forum  (28)  
 
Black Blood MRAForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Cardiovascular Imaging -
 
With this magnetic resonance angiography technique flowing blood appears dark.
MR black blood techniques have been developed for cardiovascular imaging to improve segmentation of myocardium from the blood pool. Black blood MRA techniques decrease the signal from blood with reference to the myocardium and make it easier to perform cardiac chamber segmentation.
ECG gated spin echo sequences with presaturation pulses for magnetization preparation will show strong intravascular signal loss due to flow effects when appropriate imaging conditions including spatial presaturation are used. The sequence use the flow void effect as blood passes rapidly through the selected slice.
For dark blood preparation, a pair of nonselective and selective 180° inversion pulses are used, followed by a long inversion time to null signal from inflowing blood. A second selective inversion pulse can also be applied with short inversion time to null the fat signal. These in cardiac imaging used black blood techniques are referred to as double inversion recovery T1 measurement turbo spin echo or fast spin echo, and double-inversion recovery STIR.
 
Images, Movies, Sliders:
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Share the entry 'Black Blood MRA':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Displacement Encoding with Stimulated Echoes
    • Inversion
    • Magnetic Resonance Angiography MRA
    • Blood Flow Imaging
    • Inversion Time
MRI Resources 
Brain MRI - MRI Technician and Technologist Career - Societies - Journals - Functional MRI - Nerve Stimulator
 
Magnetic Resonance Angiography MRAMRI Resource Directory:
 - MRA -
 
(MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography (MRA):
Detection of aneurysms and dissections
Evaluation of the vessel anatomy, including variants
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)

Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.

See also Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Angiogram
spacer
Medical-Ultrasound-Imaging.comVascular Ultrasound,  Intravascular Ultrasound
spacer

• View the DATABASE results for 'Magnetic Resonance Angiography MRA' (3).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Angiography MRA' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MR–ANGIOGRAPHY(.pdf)
  News & More:
3-D-printed model of stenotic intracranial artery enables vessel-wall MRI standardization
Friday, 14 April 2017   by www.eurekalert.org    
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
MR Angiography Highly Accurate In Detecting Blocked Arteries
Thursday, 1 February 2007   by www.sciencedaily.com    
MRI Resources 
Safety Products - Databases - Implant and Prosthesis pool - Artifacts - Spectroscopy pool - Homepages
 
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
the possibility to perform a time resolved examination (similarly to conventional angiography);
no use of ionizing radiation; paramagnetic agents have a beneficial safety.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Contrast Enhanced Magnetic Resonance Angiography' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced Magnetic Resonance Angiography' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
Searchterm 'mra' was also found in the following services: 
spacer
News  (15)  Resources  (18)  Forum  (28)  
 
2 Dimensional Time of Flight Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(2D TOF MRA) This form of MR angiography is based on the acquisition of multiple, short-TR, gradient echo single slice images. 2D TOF MRA is the preferred technique for visualizing slow flow, how for example it happens in veins. 2D TOF MRA consists of multiple sequentially-acquired single slices, therefore the saturation effects are minimized.
spacer
MRI Resources 
Sequences - Breast Implant - Raman Spectroscopy - Spectroscopy - MRI Accidents - Manufacturers
 
Blood Pool AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Blood pool agents (intravascular contrast agents) remain in the blood for a prolonged time compared with conventional contrast agents, which diffuse quickly into the interstitial space. Magnetic resonance angiography (MRA), cardiovascular imaging, or contrast enhanced MRIs are possible over an hour or more. This advantage over conventional MRI contrast media allows also higher resolution MRA of several territories using respiratory or cardiac gating techniques with a single contrast bolus.
Different types of blood pool contrast agents:
Blood pool MRI contrast agents with their longer intravascular circulation can be designed to be targeted to necrotic myocardium, to assess myocardial viability, or tumor directed to provide better diagnostic information for various tumors. A disadvantage of the use of blood pool agents for MRA is that the separation of arteries and veins is more difficult because they are present in both and the overlapping of those vessels is disturbing. This can be solved by e.g. different MIP segmentation algorithms.

See also Necrosis Avid Contrast Agent, Tumor Specific Agents, Feruglose, Gadofosveset Trisodium (Vasovist), Ultrasmall Superparamagnetic Iron Oxide and Contrast Medium.
spacer

• View the DATABASE results for 'Blood Pool Agents' (16).Open this link in a new window


• View the NEWS results for 'Blood Pool Agents' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Ablavar Prescribing Information
   by www.ablavar.com    
Lantheus Medical Imaging, Inc. Launches ABLAVAR™ (Gadofosveset Trisodium), a New Diagnostic Magnetic Resonance Angiography Agent
Wednesday, 20 January 2010   by www.radiopharm.com    
Blood-Pool Imaging Using Technetium-99m-Labeled Liposomes(.pdf)
   by jnm.snmjournals.org    
  News & More:
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
MAGNETIC RESONANCE IMAGING OF FOCAL LIVER LESIONS(.pdf)
2002
MRI Resources 
Brain MRI - Used and Refurbished MRI Equipment - Breast MRI - Resources - Cochlear Implant - RIS
 
     1 - 5 (of 59)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]