Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'relaxation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'relaxation' found in 15 terms [] and 75 definitions []
previous     46 - 50 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
Dipole Dipole Interaction
 
Interaction between a spin and its neighbors due to their magnetic dipole moments. This is an important mechanism contributing to relaxation rates. In solids and viscous liquids this can result in broadening of the spectral lines.
spacer
 
Further Reading:
  Basics:
Dipole
   by en.wikipedia.org    
MRI Resources 
Case Studies - Safety pool - Contrast Enhanced MRI - Claustrophobia - Brain MRI - Cardiovascular Imaging
 
Driven Equilibrium Fast Gradient Recalled Acquisition in the Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DE FGR) A gradient echo sequence using a pulse, which sensitizes the sequence to variations in T2, rather than waiting for T1 relaxation.
See Driven Equilibrium, Gradient Recalled Echo Sequence and Steady State Free Precession.
spacer
MRI Resources 
Abdominal Imaging - Most Wanted - Blood Flow Imaging - MRI Accidents - Raman Spectroscopy - Resources
 
Eovist®InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Eovist® (other brand name Primovist™) is a organ specific MRI contrast agent for the imaging, detection and characterization of liver conditions, including liver tumors, cysts, as well as other malignant and benign lesions. It is a water-soluble ethoxybenzyl derivative of Gd-DTPA. This compound is taken up by the hepatocytes (approximately 30% of the dose goes to the hepatocytes) and is equally excreted renal and biliary in humans. Excretion of Gd-EOB-DTPA in the bile may also permit visualization of both the gall bladder and the bile ducts.
Eovist® brightens the signal of T1 weighted MR images immediately after contrast administration. Dynamic and accumulation phase imaging can also be performed after bolus injection of Eovist®. The hepatocytes uptake will increase the signal intensity of normal liver parenchyma at 10 to 20 minutes after injection. This results in improved lesion-to-liver contrast because malignant tumors (metastases, the majority of hepatocellular carcinomas) do not contain either hepatocytes or their functioning is hampered.

WARNING: Gadolinium-based contrast agents increase the risk for nephrogenic systemic fibrosis (NSF) in patients with acute or chronic severe renal insufficiency (glomerular filtration rate less than 30 mL/min/1.73m2), or acute renal insufficiency of any severity due to the hepato-renal syndrome or in the perioperative liver transplantation period.

See also Drug Development and Approval Process USA, Contrast Medium, Hepatobiliary Contrast Agents, Tumor Specific Agents and Molecular Imaging.
Drug Information and Specification
NAME OF COMPOUND
Gadoxetic acid disodium, Gd-EOB-DTPA
CENTRAL MOIETY
Gd2+
CONTRAST EFFECT
T1, Predominantly positive enhancement
Short T1-relaxation time
PHARMACOKINETIC
50% hepatobiliary, 50% renal excretion
884 mosm/kgH2O
CONCENTRATION
0.25 mol/L
DOSAGE
12,5 - 25 µmol/kg
PREPARATION
Finished product
INDICATION
Liver lesions
DEVELOPMENT STAGE
For sale
DISTRIBUTOR
See below
PRESENTATION
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
spacer

• View the DATABASE results for 'Eovist®' (4).Open this link in a new window

 
Further Reading:
  Basics:
HIGHLIGHTS OF PRESCRIBING INFORMATION
2008   by berlex.bayerhealthcare.com    
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
Flow Effects
 
Motion of material being imaged, particularly flowing blood, can result in many possible effects in the images.
Fast moving blood produces flow voids, blood flowing in to the outer slices of an imaging volume produces high signals (flow related enhancement, entry slice phenomenon), pulsatile flow creates ghost images of the vessel extending across the image in the phase encoding direction (image misregistration).
Flow-related dephasing occurring when spin isochromats are moving with different velocities in an external gradient field G so that they acquire different phases. When these phases vary by more then 180° within a voxel, substantial spin dephasing results leading to considerable intravascular signal loss.
These effects can be understood as caused by time of flight effects (washout or washin due to motion of nuclei between two consecutive spatially selective RF excitations, repeated in times on the order of, or shorter than the relaxation times of blood) or phase shifts (delay between phase encoding and frequency encoding) that can be acquired by excited spins moving along magnetic field gradients.
The inconsistency of the signal resulting from pulsatile flow can lead to artifacts in the image. The flow effects can also be exploited for MR angiography or flow measurements.

See also Flow Artifact.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Neck  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Flow Effects' (16).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
MRI Resources 
Artifacts - Stimulator pool - Spectroscopy - Journals - Jobs pool - Collections
 
Flow Related Enhancement
 
(FRE) Flow related enhancement could be seen most for blood flow, but also for other liquids with some MR imaging techniques, as an increase in intensity due to the washout of saturated spins. FRE provides positive contrast ("bright blood") of vascular details in time of flight MRA as well as the physiologic characterization of blood flow.
If stationary spins within the scanned region experience only an incomplete T1 relaxation between the repeated radio frequency (RF) excitations, this results in fewer signal of the stationary tissue (compared to inflowing blood with completely relaxed spins). The degree of the flow related enhancement is proportional to the blood flow velocity and the used repetition time. The use of flow compensation (gradient moment nulling) improves the FRE especially in gradient echo sequences.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Flow Related Enhancement' (10).Open this link in a new window

 
Further Reading:
  Basics:
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
MRI Resources 
MRI Reimbursement - Resources - Sequences - Safety Training - Jobs - Corporations
 
previous      46 - 50 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]