Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'relaxation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'relaxation' found in 15 terms [] and 75 definitions []
previous     71 - 75 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
Nuclear Magnetic Resonance ImagingMRI Resource Directory:
 - NMR -
 
Creation of images of objects such as the body by use of the nuclear magnetic resonance phenomenon. The immediate practical application involves imaging the distribution of hydrogen nuclei (protons) in the body. The image brightness in a given region depends on the spin density and the relaxation times, with their relative importance determined by the particular imaging technique employed. Image brightness is also affected by motion such as blood flow.

See also Zeugmatography and Magnetic Resonance Imaging MRI.
spacer

• View the NEWS results for 'Nuclear Magnetic Resonance Imaging' (1).Open this link in a new window.
 
Further Reading:
  News & More:
New quantum sensing technique allows high-resolution nuclear magnetic resonance spectroscopy
Wednesday, 17 June 2020   by phys.org    
MRI Resources 
Nerve Stimulator - Patient Information - Brain MRI - Cardiovascular Imaging - Examinations - MRI Physics
 
Nuclear Overhauser Effect
 
(NOE) A change in the steady state magnetization of a particular nucleus due to irradiation of a neighboring nucleus with, which it is coupled by means of a spin spin coupling interaction. This interaction must be the primary relaxation mechanism of these nuclei. Such an effect can occur during decoupling and must be taken into account for accurate intensity determinations during such procedures.
spacer

• View the DATABASE results for 'Nuclear Overhauser Effect' (3).Open this link in a new window

MRI Resources 
Research Labs - Jobs - Devices - Implant and Prosthesis pool - Guidance - Functional MRI
 
Paramagnetism
 
Paramagnetic materials attract and repel like normal magnets when subject to a magnetic field. This alignment of the atomic dipoles with the magnetic field tends to strengthen it, and is described by a relative magnetic permeability greater than unity. Paramagnetism requires that the atoms individually have permanent dipole moments even without an applied field, which typically implies a partially filled electron shell. In pure Paramagnetism (without an external magnetic field), these atomic dipoles do not interact with one another and are randomly oriented in the absence of an external field, resulting in zero net moment.
Paramagnetic materials in magnetic fields will act like magnets but when the field is removed, thermal motion will quickly disrupt the magnetic alignment. In general, paramagnetic effects are small (magnetic susceptibility of the order of 10-3 to 10-5).
In MRI, gadolinium (Gd) one of these paramagnetic materials is used as a contrast agent. Through interactions between the electron spins of the paramagnetic gadolinium and the water nuclei nearby, the relaxation rates (T1 and T2) of the water protons are increased (T1 and T2 times are decreased), causing an increase in signal on T1 weighted images.

See also contrast agents, magnetism, ferromagnetism, superparamagnetism, and diamagnetism.
spacer

• View the DATABASE results for 'Paramagnetism' (11).Open this link in a new window

 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
Paramagnetism
Wednesday, 23 November 2005   by en.wikipedia.org    
  News & More:
LEARNING CENTER FOR PARAMAGNETISM
2003   by www.naturesalternatives.com    
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
Partial Saturation Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PSSE) Partial saturation sequence in which the signal is detected as a spin echo. Even though a spin echo is used, there will not necessarily be a significant contribution of the T2 relaxation time to image contrast, unless the echo time, TE, is on the order of or longer than T2.
spacer
MRI Resources 
Crystallography - Supplies - MRI Accidents - Non-English - Process Analysis - Diffusion Weighted Imaging
 
Point Resolved SpectroscopyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PRESS) Point resolved spectroscopy is a multi echo single shot technique to obtain spectral data. PRESS is a 90°-180°-180° (slice selective pulses) sequence. The 90° radio frequency pulse rotates the spins in the yx-plane, followed by the first 180° pulse (spin rotation in the xz-plane) and the second 180° pulse (spin rotation in the xy-plane), which gives the signal.
With the long echo times used in PRESS, there is a better visualization of metabolites with longer relaxation times. Many of the metabolites depicted by stimulated echo technique are not seen on point resolved spectroscopy, but PRESS is less susceptible to motion, diffusion, and quantum effects and has a better SNR than stimulated echo acquisition mode (STEAM).
spacer

• View the DATABASE results for 'Point Resolved Spectroscopy' (3).Open this link in a new window

 
Further Reading:
  Basics:
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
MRI Resources 
Shoulder MRI - Libraries - Image Quality - Breast MRI - MRI Reimbursement - Manufacturers
 
previous      71 - 75 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 24 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]