Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'relaxation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'relaxation' found in 15 terms [] and 75 definitions []
previous     86 - 90 (of 90)     
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
T2 Star
 
(T2* or T two star) The observed time constant of the FID due to loss of phase coherence among spins oriented at an angle to the static magnetic field. Commonly due to a combination of magnetic field inhomogeneities, dB, and spin spin transverse relaxation, with the result of rapid loss in transverse magnetization and MRI signal. MRI signals can usually still be recovered as a spin echo in times less than or on the order of T2.
1/T2 * @ 1/T2 + Dw/2; Dw = gDB. The FID will generally not be exponential, so that T2* will not be unique.
spacer
 
• Related Searches:
    • Susceptibility
    • Gradient Echo
    • Spin
    • Phase Coherence
    • T2 Relaxation
 
Further Reading:
  News & More:
Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
Tuesday, 2 February 2016   by www.eurekalert.org    
MRI Resources 
Societies - Shielding - Manufacturers - Claustrophobia - Implant and Prosthesis pool - Crystallography
 
T2*Forum -
related threads
 
T2* (also called T2 Star) is composed of molecular interactions (spin spin relaxation) and local magnetic field non-uniformities. Caused by this the protons precess at slightly different frequencies. The T2* effect cause a rapid loss in coherence and transverse magnetization. The T2* time is less than the T2 time.

See also T2* Time, T2 Star.
spacer

• View the DATABASE results for 'T2*' (42).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
T2* cardiac MRI allows prediction of severe reperfusion injury after STEMI
Tuesday, 9 November 2010   by www.medwire-news.md    
Introduction to MRI Physics, Page 9
   by www.simplyphysics.com    
  News & More:
Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
Tuesday, 2 February 2016   by www.eurekalert.org    
Resonance Health Limited (RHT.AX) Receives FDA Approval for MRI-Q Cardiac Iron T2* Test
Tuesday, 16 August 2011   by www.biospace.com    
MRI effectively measures hemochromatosis iron burden
Saturday, 3 October 2015   by medicalxpress.com    
Principles, Techniques, and Applications of T2*- based MR Imaging and Its Special Applications1
September 2009   by pubs.rsna.org    
MRI Resources 
MRI Technician and Technologist Schools - Safety Training - Pacemaker - Education pool - Absorption and Emission - Implant and Prosthesis pool
 
T2* Time
 
(T2 Star) The characteristic time constant that describes the decay of transverse magnetization, taking into account the inhomogeneity in static magnetic fields and the spin spin relaxation in the human body. This results in a rapid loss of phase coherence and the MRI signal. The T2* time is always less than the T2 time.
spacer

• View the DATABASE results for 'T2* Time' (2).Open this link in a new window

 
Further Reading:
  News & More:
Iron Measurements with MRI Reveal Stroke's Impact on Brain
Tuesday, 12 March 2019   by www.rsna.or    
Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain
Wednesday, 5 June 2013   by www.hindawi.com    
T2* cardiac MRI allows prediction of severe reperfusion injury after STEMI
Tuesday, 9 November 2010   by www.medwire-news.md    
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
Teslascan®InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
(Mn-DPDP) This agent, mangafodipir trisodium, is a hepatocyte specific MRI contrast agent. Manganese is very toxic, so it has to be chelated and put in the form of a vitamin B6 analog, which is taken up by normal hepatocytes to some extent.
Teslascan® was developed in the early 1980's, went through clinical trials in the early 1990's, and was approved in 1997. One problem with assessing the efficacy of this agent is the fact that the phase III trials finished in the early 1990's, and the techniques used for MR today are very different from the techniques used almost a decade ago.
This contrast agent shortens the T1 relaxation time. On T1 weighted pictures it makes a normal liver look brighter. Since metastases, for example, do not generally take up this agent, the contrast between the enhancing liver and the non-enhancing lesions will increase on T1 weighted pictures. It does not have much effect on T2 weighted images.
Drug Information and Specification
NAME OF COMPOUND
Mangafodipir trisodium, Manganese dipyroxyl diphosphate, MN-DPDP
DEVELOPER
CENTRAL MOIETY
Mn2+
CONTRAST EFFECT
T1, Predominantly positive enhancement
r1=2.3, r2=4.0, B0=1.0 T
PHARMACOKINETIC
Hepatobiliary, pancreatic, adrenal
290 mosm/kgH2O
CONCENTRATION
0.01 mmol/L
DOSAGE
5 µmol/kg, 0.5 ml/kg
PREPARATION
Finished product
INDICATION
Liver lesions
DEVELOPMENT STAGE
Approved
DISTRIBUTOR
See below
PRESENTATION
Vials of 100 ml
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
USA
Teslascan®
for sale
EU
Teslascan®
for sale
spacer

• View the DATABASE results for 'Teslascan®' (4).Open this link in a new window

 
Further Reading:
  Basics:
EMEA - Teslascan - SCIENTIFIC DISCUSSION(.pdf)
   by www.emea.europa.eu    
  News & More:
Diagnosis and staging of pancreatic cancer: comparison of mangafodipir trisodium-enhanced MR imaging and contrast-enhanced helical hydro-CT.
2002
MAGNETIC RESONANCE IMAGING OF FOCAL LIVER LESIONS(.pdf)
2002
MRI Resources 
Jobs pool - Movies - Spine MRI - Functional MRI - Blood Flow Imaging - Libraries
 
Time of Flight AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.

See also Magnetic Resonance Angiography and Contrast Enhanced Magnetic Resonance Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Coronary Angiogram
spacer
Medical-Ultrasound-Imaging.comColor Power Angio,  Doppler Ultrasound
spacer

• View the DATABASE results for 'Time of Flight Angiography' (11).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Brain MRI - Crystallography - IR - MRI Physics - DICOM - Manufacturers
 
previous      86 - 90 (of 90)     
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]