Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'sense' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'sense' found in 2 terms [] and 25 definitions []
previous     6 - 10 (of 27)     next
Result Pages : [1]  [2 3 4 5 6]
Searchterm 'sense' was also found in the following services: 
spacer
News  (7)  Resources  (2)  Forum  (7)  
 
Intera 1.0TPanorama 0.2InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/de/products/mri/products/ From Philips Medical Systems; the Intera-family offers with this mid field system maximum efficiency, flexibility and performance. All Philips MR products contain SENSE (coil SENSitivity Encoding) technology - that increases scanning speed.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
Standard: head, body, C1, C3; Optional: Small joint, flex-E, flex-R, endocavitary (L and S), dual TMJ, knee, neck, T/L spine, breast; Optional phased array: Spine, pediatric, 3rd party connector, Optional SENSE Coils: Flex-S-M-L, Flex Body, Flex Cardiac
Optional
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, Modified-SE, IR (T1, T2, PD), STIR, FLAIR, SPIR, FFE, T1-FFE, T2-FFE, Balanced FFE, TFE, Balanced TFE, Dynamic, Keyhole, 3D, Multi Chunk 3D, Multi Stack 3D, K Space Shutter, MTC, TSE, Dual IR, DRIVE, EPI, Cine, 2DMSS, DAVE, Mixed Mode; Angiography: Inflow MRA, TONE, PCA, CE MRA
IMAGING MODES
Single Slice 2D , Multi Single Slice 2D, Multi Slice 2D, 3D, Multi Chunk 3D, Multi Stack 3D
TR
Min. 2.9 (Omni) msec, 1.6 (Power) msec
TE
Min. 1.0 (Omni) msec, 0.7 (Power) msec
SINGLE/MULTI SLICE
RapidView Recon. greater than 500 @ 256 Matrix
FOV
Max. 53 cm
0.1 mm(Omni), 0.05 mm (Power)
128 x 128, 256 x 256,512 x 512,1024 x 1024 (64 for Bold img)
MEASURING MATRIX
Variable in 1% increments
PIXEL INTENSITY
Lum.: 120 cd/m2; contrast: 150:1
Variable (op. param. depend.)
60 x 60 cm
MAGNET WEIGHT
2700 kg
H*W*D
240 x 188 x 157 cm
POWER REQUIREMENTS
380/400 V
CRYOGEN USE
0.03 L/hr helium
STRENGTH
23 mT/m (Omni), 30 (Power) mT/m
5-GAUSS FRINGE FIELD
2.3 m / 3.3 m
Passive and dynamic
spacer
 
• Related Searches:
    • MRI Equipment
    • Hardware
    • Device
    • Open MRI
    • Superconducting Magnet
MRI Resources 
MRI Training Courses - Education pool - Implant and Prosthesis - Databases - Colonography - Manufacturers
 
Intera 1.5TPanorama 0.2InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/de/products/mri/products/ From Philips Medical Systems;
the Intera-family offers with this member a wide range of possibilities, efficiency and a ergonomic and intuitive serving-platform. Also available as Intera CV for cardiac and Intera I/T for interventional MR procedures.
The scanners are also equipped with SENSE technology, which is essential for high-quality contrast enhanced magnetic resonance angiography, interactive cardiac MR and diffusion tensor imaging (DTI) fiber tracking.
The increased accuracy and clarity of MR scans obtained with this technology allow for faster and more accurate diagnosis of potential problems like patient friendliness and expands the breadth of applications including cardiology, oncology and interventional MR.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
Standard: head, body, C1, C3; Optional: Small joint, flex-E, flex-R, endocavitary (L and S), dual TMJ, knee, neck, T/L spine, breast; Optional phased array: Spine, pediatric, 3rd party connector; Optional SENSE coils: Flex-S-M-L, flex body, flex cardiac
Optional
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, Modified-SE (TSE), IR (T1, T2, PD), STIR, FLAIR, SPIR, FFE, T1-FFE, T2-FFE, Balanced FFE, TFE, Balanced TFE, Dynamic, Keyhole, 3D, Multi Chunk 3D, Multi Stack 3D, K Space Shutter, MTC, TSE, Dual IR, DRIVE, EPI, Cine, 2DMSS, DAVE, Mixed Mode; Angiography: PCA, MCA, Inflow MRA, CE
IMAGING MODES
Single Slice 2D , Multi Single Slice 2D, Multi Slice 2D, 3D, Multi Chunk 3D, Multi Stack 3D
TR
2.9 (Omni), 1.6 (Power), 1.6 (Master/Expl) msec
TE
1.0 (Omni), 0.7 (Power), 0.5 (Master/Expl) msec
SINGLE/MULTI SLICE
RapidView Recon. greater than 500 @ 256 Matrix
FOV
Max. 53 cm
0.1 mm(Omni), 0.05 mm (Pwr/Mstr/Expl)
128 x 128, 256 x 256,512 x 512,1024 x 1024 (64 for BOLD img.)
MEASURING MATRIX
Variable in 1% increments
PIXEL INTENSITY
Lum.: 120 cd/m2; contrast: 150:1
Variable (op. param. depend.)
60 cm diameter (patient)
MAGNET WEIGHT
2900 kg
H*W*D
240 x 188 x 157 cm
POWER REQUIREMENTS
380/400 V
CRYOGEN USE
0.03 L/hr helium
STRENGTH
30 mT/m
5-GAUSS FRINGE FIELD
2.4 m / 3.8 m
Passive and dynamic
spacer

• View the DATABASE results for 'Intera 1.5T™' (2).Open this link in a new window

MRI Resources 
RIS - Safety Training - DICOM - Cardiovascular Imaging - Case Studies - Process Analysis
 
Array Spatial Sensitivity Encoding TechniqueInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(ASSET) ASSET is a parallel imaging technique of the SENSE type (image domain reconstruction).
Each coil element is sensitivity encoded and the covered spatial zone is mapped. By reducing the field of view in the phase encoding gradient direction the scan time decreases, but this images of each coil element contain foldover artifacts. The sensitivity profiles of the elements are used to calculate unfolded images.

See also Sensitivity Encoding, Generalized Autocalibrating Partially Parallel Acquisition.
spacer

• View the DATABASE results for 'Array Spatial Sensitivity Encoding Technique' (4).Open this link in a new window

Searchterm 'sense' was also found in the following services: 
spacer
News  (7)  Resources  (2)  Forum  (7)  
 
Coronary AngiographyMRI Resource Directory:
 - Cardiovascular Imaging -
 
(MRI-CA, MRCA) The noninvasive imaging of the coronary arteries using magnetic resonance imaging of the heart.
For cardiac MRI-CA, high performance machines are necessary with minimum 40mT/m and 300μsec slew rate.
2D and 3D acquisition are used for fast gradient echo sequences with techniques for minimizing cardiac and respiratory motion and suppressing the high signal of pericardial fat. The optimal sequences seem to be trueFISP, Balanced FFE or FIESTA with SMASH and SENSE techniques. Respiratory motion is minimized for 3D acquisitions by using respiratory gating, especially using navigator echoes (Navigator Technique) to track diaphragmatic and cardiac movement. Optimization of MR technique can provide mapping of long segments of the coronary arteries.
Blood pool agents are being applied to improve the reliability of coronary MR angiography. The major current clinical indication is the identification of coronary artery anomalies because the diagnostic accuracy's for identifying haemodynamically significant stenoses are variable depending of the image quality.

See also Magnetic Resonance Angiography, and Cardiac MRI.
spacer

• View the DATABASE results for 'Coronary Angiography' (7).Open this link in a new window

 
Further Reading:
  Basics:
Role of Magnetic Resonance Imaging in Visualizing Coronary Arteries
Monday, 2 August 2004   by www.clinmedres.org    
  News & More:
Graphic illustration
Tuesday, 12 February 2008   by www.theengineer.co.uk    
MRI Resources 
Image Quality - Fluorescence - Journals - Societies - Libraries - Stent
 
Generalized Autocalibrating Partially Parallel AcquisitionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(GRAPPA) GRAPPA is a parallel imaging technique to speed up MRI pulse sequences. The Fourier plane of the image is reconstructed from the frequency signals of each coil (reconstruction in the frequency domain).
Parallel imaging techniques like GRAPPA, auto-SMASH and VD-AUTO-SMASH are second and third generation algorithms using k-space undersampling. A model from a part of the center of k-space is acquired, to find the coefficients of the signals from each coil element, and to reconstruct the missing intermediary lines. The acquisition of these additional lines is a form of self-calibration, which lengthens the overall short scan time. The acquisition of these k-space lines provides mapping of the whole field as well as data for the image contrast.
Algorithms of the GRAPPA type work better than the SENSE type in heterogeneous body parts like thoracic or abdominal imaging, or in pulse sequences like echo planar imaging. This is caused by differences between the sensitivity map and the pulse sequence (e.g. artifacts) or an unreliable sensitivity map.
spacer

• View the DATABASE results for 'Generalized Autocalibrating Partially Parallel Acquisition' (2).Open this link in a new window

MRI Resources 
Veterinary MRI - Implant and Prosthesis pool - Image Quality - IR - Breast Implant - Abdominal Imaging
 
previous      6 - 10 (of 27)     next
Result Pages : [1]  [2 3 4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]