Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'spin lattice relaxation Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'spin lattice relaxation Time' found in 1 term [] and 1 definition [], (+ 4 Boolean[] results
1 - 5 (of 6)     next
Result Pages : [1]  [2]
MRI Resources 
Shoulder MRI - NMR - MRI Centers - Musculoskeletal and Joint MRI - Mobile MRI Rental - Most Wanted
 
Spin Lattice Relaxation Time
 
(T1) The spin lattice relaxation time (also called longitudinal relaxation time and T1 Time) is a spin property, whereby the value changes between different tissues. By the spin lattice relaxation process, the longitudinal magnetization Mz achieve the equilibrium value Mz0. The T1 time constant is an exponential approach toward Mz0.
The equation for the magnetization at a time t will be (if at t=0 the longitudinal magnetization is Mz0):
Mz(t) = M0+(Mz (0) - Mz0) exp(t/T1)
spacer
 
• Share the entry 'Spin Lattice Relaxation Time':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Longitudinal Relaxation Rate
    • Spin Lattice Relaxation
    • Contrast Enhanced MRI
    • Short T1 Inversion Recovery
    • Relaxation Effect
 
Further Reading:
  Basics:
Electron Spin Resonance
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
MULTIEXPONENTIAL PROTON SPIN-SPIN RELAXATION IN MAGNETIC RESONANCE IMAGING OF HUMAN BRAIN TUMORS
Friday, 26 March 1999   by www.dkfz-heidelberg.de    
MRI Resources 
Service and Support - Shoulder MRI - MRA - General - Movies - Guidance
 
Short T1 Inversion RecoveryInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(STIR) Also called Short Tau (t) (inversion time) Inversion Recovery. STIR is a fat suppression technique with an inversion time t = T1 ln2 where the signal of fat is zero (T1 is the spin lattice relaxation time of the component that should be suppressed). To distinguish two tissue components with this technique, the T1 values must be different. Fluid Attenuation Inversion Recovery (FLAIR) is a similar technique to suppress water.
Inversion recovery doubles the distance spins will recover, allowing more time for T1 differences. A 180° preparation pulse inverts the net magnetization to the negative longitudinal magnetization prior to the 90° excitation pulse. This specialized application of the inversion recovery sequence set the inversion time (t) of the sequence at 0.69 times the T1 of fat. The T1 of fat at 1.5 Tesla is approximately 250 with a null point of 170 ms while at 0.5 Tesla its 215 with a 148 ms null point. At the moment of excitation, about 120 to 170 ms after the 180° inversion pulse (depending of the magnetic field) the magnetization of the fat signal has just risen to zero from its original, negative, value and no fat signal is available to be flipped into the transverse plane.
When deciding on the optimal T1 time, factors to be considered include not only the main field strength, but also the tissue to be suppressed and the anatomy. In comparison to a conventional spin echo where tissues with a short T1 are bright due to faster recovery, fat signal is reversed or darkened. Because body fluids have both a long T1 and a long T2, it is evident that STIR offers the possibility of extremely sensitive detection of body fluid. This is of course, only true for stationary fluid such as edema, as the MRI signal of flowing fluids is governed by other factors.

See also Fat Suppression and Inversion Recovery Sequence.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'Short T1 Inversion Recovery' (3).Open this link in a new window

 
Further Reading:
  Basics:
Can Short Tau Inversion Recovery (STIR) Imaging Be Used as a Stand-Alone Sequence To Assess a Perianal Fistulous Tract on MRI? A Retrospective Cohort Study Comparing STIR and T1-Post Contrast Imaging
Wednesday, 17 January 2024   by www.cureus.com    
  News & More:
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
Wednesday, 25 August 2021
Short tau inversion recovery (STIR) after intravenous contrast agent administration obscures bone marrow edema-like signal on forefoot MRI
Tuesday, 13 July 2021   by www.springermedizin.de    
MRI Resources 
Mobile MRI Rental - Non-English - Libraries - Directories - Contrast Agents - Knee MRI
 
Relaxometry
 
Relaxation time is a general physics concept for the characteristic time in which a system relaxes under certain changes in external conditions. Relaxometry is the theory of relaxation times (spin lattice (T1) and spin spin relaxation (T2)), and their dependence on physical parameters such as magnetic field strength, molecular structure, temperature, pH, and the presence and type of relaxation agents.
spacer

• View the NEWS results for 'Relaxometry' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Measurements of the relaxivity of gadolinium chelates in tissues in vivo(.pdf)
2001   by cds.ismrm.org    
  News & More:
Imagion (ASX:IBX) share price up 1,166% in a year pursuing adiation-free™ cancer tech
Monday, 29 March 2021   by www.fool.com.au    
MRI Resources 
MRI Training Courses - Supplies - Lung Imaging - Libraries - Shielding - Brain MRI
 
T1 Relaxation
 
The return to equilibrium (high energy protons returns to the low energy state) within the lattice is named the T1, spin lattice or longitudinal relaxation. During the time T1, the spinning protons realign with the external magnetic field with an exchange of their energy, resulting in heat. The value of the T1 time depends of the tissues ability for energy exchange.

See also Longitudinal Relaxation Time.
spacer

• View the DATABASE results for 'T1 Relaxation' (18).Open this link in a new window

 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
MRI Resources 
Examinations - Stent - Online Books - Databases - Used and Refurbished MRI Equipment - Anatomy
 
T1 TimeForum -
related threads
 
The T1 relaxation time (also called spin lattice or longitudinal relaxation time), is a biological parameter that is used in MRIs to distinguish between tissue types. This tissue-specific time constant for protons, is a measure of the time taken to realign with the external magnetic field. The T1 constant will indicate how quickly the spinning nuclei will emit their absorbed RF into the surrounding tissue.
As the high-energy nuclei relax and realign, they emit energy which is recorded to provide information about their environment. The realignment with the magnetic field is termed longitudinal relaxation and the time in milliseconds required for a certain percentage of the tissue nuclei to realign is termed 'Time 1' or T1. Starting from zero magnetization in the z direction, the z magnetization will grow after excitation from zero to a value of about 63% of its final value in a time of T1. This is the basic of T1 weighted images.
The T1 time is a contrast determining tissue parameter. Due to the slow molecular motion of fat nuclei, longitudinal relaxation occurs rather rapidly and longitudinal magnetization is regained quickly. The net magnetic vector realigns with B0 leading to a short T1 time for fat.
Water is not as efficient as fat in T1 recovery due to the high mobility of the water molecules. Water nuclei do not give up their energy to the lattice (surrounding tissue) as quickly as fat, and therefore take longer to regain longitudinal magnetization, resulting in a long T1 time.

See also T1 Weighted Image, T1 Relaxation, T2 Weighted Image, and Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 2  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T2 And T1  Open this link in a new window
 Brain MRI Images T1  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'T1 Time' (15).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
A practical guideline for T1 reconstruction from various flip angles in MRI
Saturday, 1 October 2016   by journals.sagepub.com    
Magnetic resonance imaging - From Wikipedia, the free encyclopedia.
   by en.wikipedia.org    
  News & More:
New technique could allow for safer, more accurate heart scans
Thursday, 10 December 2015   by www.gizmag.com    
Rockland Technimed: Tissue Viability Imaging
Saturday, 15 December 2007   by www.onemedplace.com    
MRI Resources 
Cochlear Implant - Claustrophobia - MRA - Knee MRI - Shoulder MRI - Software
 
     1 - 5 (of 6)     next
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]