Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 

Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 




 
MRI Sequences
 
 
 
ball_redSpecial Imaging 
Special imaging primarily means advanced MRI techniques used for qualitative and quantitative measurement of biological metabolism as e.g., spectroscopy, perfusion imaging (PWI, ASL), diffusion weighted imaging (DWI, DTI, DTT) and brain function (BOLD, fMRI). This physiological magnetic resonance techniques offer insights into brain structure, function, and metabolism.
Spectroscopy provides functional information related to identification and quantification of e.g. brain metabolites. MR perfusion imaging has applications in stroke, trauma, and brain neoplasm. MRI provides the high spatial and temporal resolution needed to measure blood flow to the brain. arterial spin labeling techniques utilize the intrinsic protons of blood and brain tissue, labeled by special preparation pulses, rather than exogenous tracers injected into the blood.
MR diffusion tensor imaging characterizes the ability of water to spread across the brain in different directions. Diffusion parallel to nerve fibers has been shown to be greater than diffusion in the perpendicular direction. This provides a tool to study in vivo fiber connectivity in brain MRI.
FMRI allows the detection of a functional activation in the brain because cortical activity is intimately related to local metabolism changes.

See also Diffusion Tensor Tractography.

• View the NEWS results for 'Special Imaging' (14).Open this link in a new window.
 
Further Reading:
  Basics:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
Philips and University Medical Center Utrecht Partner to Advance Quantitative MRI With MR-STAT
Monday, 10 August 2020   by www.itnonline.com    
This new 'whole body' MRI is better for cancer patients
Tuesday, 28 January 2014   by www.physiciansnews.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
Arterial Spin Labeling 
(ASL) A MR image can be sensitized to the effect of inflowing blood spins if those spins are in a different magnetic state to that of the static tissue. Techniques known as ASL techniques uses this idea by magnetically labeling blood flowing into the slices of interest. Contrast agents are not required for these techniques. This perfusion measurement is completely noninvasive.
Blood flowing into the imaging slice exchanges with tissue water, altering the tissue magnetization. A perfusion-weighted image can be generated by the subtraction of an image in which inflowing spins have been labeled from an image in which spin labeling has not been performed. Quantitative perfusion maps can be calculated if other parameters (such as tissue T1 and the efficiency of spin labeling) also are measured.

• View the NEWS results for 'Arterial Spin Labeling' (3).Open this link in a new window.

• View the DATABASE results for 'Arterial Spin Labeling' (5).Open this link in a new window

 
Further Reading:
  News & More:
FDG-PET displays its prowess in dementia detection
Monday, 2 March 2020   by physicsworld.com    
Ischemic Stroke: Collateral Blood Vessels Detected by Arterial Spin Labeling MRI Correlates With Good Neurological Outcome
Thursday, 30 March 2017   by medicalresearch.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Non-invasive MRI technique distinguishes between Alzheimer's and frontotemporal dementia
Saturday, 18 June 2005   by www.eurekalert.org    
Blood Oxygenation Level Dependent Contrast 
(BOLD) In MRI the changes in blood oxygenation level are visible. Oxyhaemoglobin (the principal haemoglobin in arterial blood) has no substantial magnetic properties, but deoxyhaemoglobin (present in the draining veins after the oxygen has been unloaded in the tissues) is strongly paramagnetic. It can thus serve as an intrinsic paramagnetic contrast agent in appropriately performed brain MRI. The concentration and relaxation properties of deoxyhaemoglobin make it a susceptibility , e.g. T2 relaxation effective contrast agent with little effect on T1 relaxation.
During activation of the brain, the oxygen consumption of the local tissue increase by approximately 5% with that the oxygen tension will decrease. As a consequence, after a short period of time vasodilatation occurs, resulting in a local increase of blood volume and flow by 20 - 40%. The incommensurate change in local blood flow and oxygen extraction increases the local oxygen level.
By using T2 weighted gradient echo EPI sequences, which are highly susceptibility sensitive and fast enough to capture the three-dimensional nature of activated brain areas will show an increase in signal intensity as oxyhaemoglobin is diamagnetic and deoxyhaemoglobin is paramagnetic. Other MR pulse sequences, such as spoiled gradient echo pulse sequences are also used.
As the effects are subtle and of the order of 2% in 1.5 T MR imaging, sophisticated methodology, paradigms and data analysis techniques have to be used to consistently demonstrate the effect.
As the BOLD effect is due to the deoxygenated blood in the draining veins, the spatial localization of the region where there is increased blood flow resulting in decreased oxygen extraction is not as precisely defined as the morphological features in MRI. Rather there is a physiological blurring, and is estimated that the linear dimensions of the physiological spatial resolution of the BOLD phenomenon are around 3 mm at best.

• View the DATABASE results for 'Blood Oxygenation Level Dependent Contrast' (6).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
  News & More:
A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal
Tuesday, 29 August 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
MRI Technique Used to Identify Future Risk of Binge Drinking
Monday, 6 January 2020   by www.diagnosticimaging.com    
Gold Acupuncture Needle MRI Pain Discovery
Friday, 3 January 2014   by www.healthcmi.com    
MRI method for measuring MS progression validated
Thursday, 19 December 2013   by www.eurekalert.org    
Diffusion Weighted Imaging 
(DWI) Magnetic resonance imaging is sensitive to diffusion, because the diffusion of water molecules along a field gradient reduces the MR signal. In areas of lower diffusion the signal loss is less intense and the display from this areas is brighter. The use of a bipolar gradient pulse and suitable pulse sequences permits the acquisition of diffusion weighted images (images in which areas of rapid proton diffusion can be distinguished from areas with slow diffusion).
Based on echo planar imaging, multislice DWI is today a standard for imaging brain infarction. With enhanced gradients, the whole brain can be scanned within seconds. The degree of diffusion weighting correlates with the strength of the diffusion gradients, characterized by the b-value, which is a function of the gradient related parameters: strength, duration, and the period between diffusion gradients.
Certain illnesses show restrictions of diffusion, for example demyelinization and cytotoxic edema. Areas of cerebral infarction have decreased apparent diffusion, which results in increased signal intensity on diffusion weighted MRI scans. DWI has been demonstrated to be more sensitive for the early detection of stroke than standard pulse sequences and is closely related to temperature mapping.
DWIBS is a new diffusion weighted imaging technique for the whole body that produces PET-like images. The DWIBS sequence has been developed with the aim to detect lymph nodes and to differentiate normal and hyperplastic from metastatic lymph nodes. This may be possible caused by alterations in microcirculation and water diffusivity within cancer metastases in lymph nodes.

See also Diffusion Weighted Sequence, Perfusion Imaging, ADC Map, Apparent Diffusion Coefficient, and Diffusion Tensor Imaging.

• View the NEWS results for 'Diffusion Weighted Imaging' (4).Open this link in a new window.

• View the DATABASE results for 'Diffusion Weighted Imaging' (11).Open this link in a new window

 
Further Reading:
  Basics:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
Novel MRI Technique Could Reduce Breast Biopsies, University of Washington Study
Tuesday, 2 October 2012   by www.eurekalert.org    
Quantitative Apparent Diffusion Coefficient Measurements Obtained by 3-Tesla MRI Are Correlated with Biomarkers of Bladder Cancer Proliferative Activity
   by www.plosone.org    
  News & More:
Stability and repeatability of diffusion-weighted imaging (DWI) of normal pancreas on 5.0 Tesla magnetic resonance imaging (MRI)
Monday, 24 July 2023   by www.nature.com    
MRI innovation makes cancerous tissue light up and easier to see
Monday, 21 March 2022   by www.sciencedaily.com    
Diffusion MRI and machine learning models classify childhood brain tumours
Saturday, 6 March 2021   by physicsworld.com    
Diffusion-weighted MRI in Advanced Epithelial Ovarian Cancer: Apparent Diffusion Coefficient as a Response Marker
Tuesday, 1 October 2019   by pubs.rsna.org    
Novel Imaging Technique Improves Prostate Cancer Detection
Tuesday, 6 January 2015   by health.ucsd.edu    
High-b-value Diffusion-weighted MR Imaging of Suspected Brain Infarction
2000   by www.ajnr.org    
Diffusion Tensor Imaging 
(DTI) Diffusion tensor imaging is the more sophisticated form of DWI, which allows for the determination of directionality as well as the magnitude of water diffusion. This kind of MR imaging can estimates damage to nerve fibers that connect the area of the brain affected by the stroke to brain regions that are distant from it, and can be used to determine the effectiveness of stroke prevention medications.
DTI (FiberTrak) enables to visualize white matter fibers in the brain and can map (trace image) subtle changes in the white matter associated with diseases such as multiple sclerosis and epilepsy, as well as assessing diseases where the brain's wiring is abnormal, such as schizophrenia.
The fractional anisotropy (FA) gives information about the shape of the diffusion tensor at each voxel. The FA is based on the normalized variance of the eigenvalues. The fractional anisotropy reflects differences between an isotropic diffusion and a linear diffusion. The FA range is between 0 and 1 (0 = isotropic diffusion, 1 = highly directional).
The development of new imaging methods and some useful analysis techniques, such as 3-dimensional anisotropy contrast (3DAC) and spatial tracking of the diffusion tensor tractography (DTT), are currently under study.

• View the NEWS results for 'Diffusion Tensor Imaging' (2).Open this link in a new window.

• View the DATABASE results for 'Diffusion Tensor Imaging' (9).Open this link in a new window

 
Further Reading:
  Basics:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
What MRI-Derived Data and Other Factors Reveal About White Matter Hyperintensity in Former Football Players
Saturday, 23 December 2023   by www.diagnosticimaging.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Learning difficulties linked to poor brain connectivity
Monday, 2 March 2020   by cosmosmagazine.com    
New imaging technique reveals early brain damage caused by hypertension
Friday, 18 September 2015   by www.medicalnewstoday.com    
Imaging shows structural changes in mild traumatic brain injury
Thursday, 25 October 2007   by www.eurekalert.org    
Diffusion Tensor Tractography 
(DTT) This technique has been reported on during the last few years and is the most intriguing demonstration that allows for the noninvasive racking of neuronal fiber projections in a living human brain. White matter fiber trajectories are reconstructed throughout the brain by tracking the direction of fastest diffusion, which is assumed to correspond to the longitudinal axis of the tract. Diffusion tensor tractography should provide new insights into white matter integrity, fiber connectivity, surgical planning, and patients prognosis.

See also B-Value.

• View the DATABASE results for 'Diffusion Tensor Tractography' (4).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion Tensor MRI for Assessing MS
Tuesday, 17 August 2004   by www.hospimedica.com    
  News & More:
New MRI Study Identifies Signature White Matter Connectivity Patterns in People with Autism
Wednesday, 16 November 2022   by www.diagnosticimaging.com    
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
HSS Researchers Launch Study Using Novel MRI Techniques to Find a Biomarker for Parsonage-Turner Syndrome, A Nerve Disorder
Monday, 21 September 2020   by www.newswise.com    
MRI Technique Reveals Brain Connection Breakdown Specific to Alzheimer's Disease
Wednesday, 10 December 2014   by alzheimersnewstoday.com    
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
Diffusion Tensor MRI Shows ADHD Abnormalities
Friday, 17 December 2004   by www.hospimedica.com    
Functional Magnetic Resonance Imaging 
(fMRI) Functional magnetic resonance imaging is a technique used to determine the dynamic brain function, often based on echo planar imaging, but can also be performed by using contrast agents and observing their first pass effects through brain tissue. Functional magnetic resonance imaging allows insights in a dysfunctional brain as well as into the basic workings of the brain.
The in functional brain MRI most frequently used effect to assess brain function is the blood oxygenation level dependent contrast (BOLD) effect, in which differential changes in brain perfusion and their resultant effect on the regional distribution of oxy- to deoxyhaemoglobin are observable because of the different 'intrinsic contrast media' effects of the two haemoglobin forms. Increased brain activity causes an increased demand for oxygen, and the vascular system actually overcompensates for this, increasing the amount of oxygenated haemoglobin. Because deoxygenated haemoglobin attenuates the MR signal, the vascular response leads to a signal increase that is related to the neural activity.
Functional imaging relates body function or thought to specific locations where the neural activity is taking place. The brain is scanned at low resolution but at a fast rate (typically once every 2-3 seconds). Structural MRI together with fMRI provides an anatomical baseline and best spatial resolution.
Interactions can also be seen from the motor cortex to the cerebellum or basal ganglia in the case of a movement disorder such as ataxia. For example: by a finger movement the briefly increase in the blood circulation of the appropriate part of the brain controlling that movement, can be measured.

• View the NEWS results for 'Functional Magnetic Resonance Imaging' (15).Open this link in a new window.

• View the DATABASE results for 'Functional Magnetic Resonance Imaging' (8).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
  News & More:
New AI application reads eye movements
Tuesday, 16 November 2021   by www.news-medical.net    
Functional MRI Can Provide Clearer Picture of Unresponsive COVID-19 Patient's Brain Function and Potential for Recovery
Tuesday, 26 January 2021   by www.hospimedica.com    
Scientists first studied the brain of birds while moving
Sunday, 20 September 2020   by freenews.live    
MRI Technique Used to Identify Future Risk of Binge Drinking
Monday, 6 January 2020   by www.diagnosticimaging.com    
Functional MRI may help identify new, effective painkillers for chronic pain sufferers
Thursday, 4 February 2016   by www.eurekalert.org    
Study shows functional MRI differences in working memory in people with primary insomnia
Saturday, 31 August 2013   by www.news-medical.net    
Functional magnetic resonance imaging may improve diagnosis of autism
Tuesday, 31 May 2011   by www.dnaindia.com    
Using fMRI to study brain development
Friday, 30 November 2007   by www.eurekalert.org    
Perfusion Imaging 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.

• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window

 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
  Spin Echo Sequence top
For a list of all the ways technology has failed to improve the quality of life, please press three.
- Alice Kahn
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Look
      Ups






MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]