| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Alignment' found in 1 term [] and 9 definitions []
| 1 - 5 (of 10) nextResult Pages : [1] [2] | | | | Searchterm 'Alignment' was also found in the following services: | | | | |
| | |
| |
|
Once hydrogen protons are placed in the presence of an external magnetic field, they align themselves in one of two directions, parallel or anti parallel to the net magnetic field.
The strength of the external magnetic field and the thermal energy of the atoms are the factors, which affect the direction of alignment of the hydrogen protons. The high-energy protons are strong enough to align themselves against or anti parallel to the magnetic field, whereas the lower energy protons will align themselves with or parallel to the magnetic field.
As the magnetic field increases, there are fewer protons, which are strong enough to align anti parallel to the magnetic field. There are always a larger number of protons aligned parallel with the magnetic field, so once the parallel and anti parallel protons cancel each other out, only the small number of low energy protons left aligned with the magnetic field create the overall net magnetization of the patient's body. | | | | | • Share the entry 'Alignment': | | | • View the NEWS results for 'Alignment' (1).
| | | | |
| | | Searchterm 'Alignment' was also found in the following service: | | | | |
| | |
| |
|
Paramagnetic materials attract and repel like normal magnets when subject to a magnetic field. This alignment of the atomic dipoles with the magnetic field tends to strengthen it, and is described by a relative magnetic permeability greater than unity. Paramagnetism requires that the atoms individually have permanent dipole moments even without an applied field, which typically implies a partially filled electron shell. In pure Paramagnetism (without an external magnetic field), these atomic dipoles do not interact with one another and are randomly oriented in the absence of an external field, resulting in zero net moment.
Paramagnetic materials in magnetic fields will act like magnets but when the field is removed, thermal motion will quickly disrupt the magnetic alignment. In general, paramagnetic effects are small ( magnetic susceptibility of the order of 10 -3 to 10 -5).
In MRI, gadolinium (Gd) one of these paramagnetic materials is used as a contrast agent. Through interactions between the electron spins of the paramagnetic gadolinium and the water nuclei nearby, the relaxation rates (T1 and T2) of the water protons are increased (T1 and T2 times are decreased), causing an increase in signal on T1 weighted images.
See also contrast agents, magnetism, ferromagnetism, superparamagnetism, and diamagnetism. | | | | • View the DATABASE results for 'Paramagnetism' (11).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
A state in which all parts of a system are at the same effective temperature, in particular where the relative alignment of the spins with the magnetic field is determined solely by the thermal energy of the system (in which case the relative numbers of spins with different alignments will be given by the Boltzmann distribution). | | | | • View the DATABASE results for 'Thermal Equilibrium' (3).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Alignment' was also found in the following services: | | | | |
| | |
| |
|
When a group of spins is placed in a magnetic field, each spin aligns in one of the two possible orientations. The relative numbers of spins with different alignments will be given by the Boltzmann distribution.
Definition: if a system of particles, which are able to exchange energy in collisions is in thermal equilibrium, then the relative number ( population) of particles, N1 and N2, in two particular energy levels with corresponding energies, E1 and E2, is given by N1/N2 = exp [-(E1 - E2)/kT] where k is the Boltzmann constant and T is the absolute temperature.
For example, in NMR of protons at room temperature in a magnetic field of 0.25 tesla, the difference in relative numbers of spins aligned with the magnetic field and against the field is about one part in a million; the small excess of nuclei in the lower energy state is the basis of the net magnetization and the resonance phenomenon. | | | | • View the DATABASE results for 'Boltzmann Distribution' (4).
| | | | |
| | | Searchterm 'Alignment' was also found in the following service: | | | | |
| | |
| |
|
Ferromagnetism is a phenomenon by which a material can exhibit a spontaneous magnetization: a net magnetic moment in the absence of an external magnetic field. More recently: a material is ferromagnetic, only if all of its magnetic ions add a positive contribution to the net magnetization (for differentiation to ferrimagnetic and antiferromagnetic materials). If some of the magnetic ions subtract from the net magnetization (if they are partially anti-aligned), then the material is ferrimagnetic. If the ions anti-align completely so as to have zero net magnetization, despite the magnetic ordering, then it is an antiferromagnet. All of these alignment effects only occur at temperatures below a certain critical temperature, called the Curie temperature (for ferromagnets and ferrimagnets) or the NĂ©el temperature (for antiferromagnets). Typical ferromagnetic materials are iron, cobalt, and nickel.
In MRI ferromagnetic objects, even very small ones, as implants or incorporations distort the homogeneity of the main magnetic field and cause susceptibility artifacts. | | | | • View the DATABASE results for 'Ferromagnetism' (7).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | 1 - 5 (of 10) nextResult Pages : [1] [2] |
| |
|
| |
| Look Ups |
| |