| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Cardiac Axes' found in 1 term [] and 6 definitions []
| 1 - 5 (of 7) nextResult Pages : [1] [2] | | | | | | |
| |
|
The cardiac anatomy is complex, and cardiac structures have different appearances depending on the imaging plane. The most useful imaging planes are those parallel and perpendicular to the cardiac axes.
The short axis (SA), vertical long cardiac axis (VLA - 2 chamber view - 2C) and horizontal long axis (HLA - 4 chamber view - 4C) are the standard views in cardiovascular imaging. The orientation of a heart is described relative to an imaginary line drawn from the base of the heart (valve plane) to the apex.
Obtaining cine images in these double-oblique planes requires the use of multiple localizing MRI sequences and knowledge of the cardiac anatomy.
The long axis image plane is determined by the line that runs from the apex of the heart to a midpoint at the base of the heart, often taken to be midway between the mitral valve leaflets. The short axis is planned perpendicular to the long axis view. | | | | | | | • Share the entry 'Cardiac Axes': | | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Breath hold imaging in MRI is a technique with one ore more stoppage of breathing during the sequence and require therefore a short scan time. Breath hold techniques are used with fast gradient echo sequences in thoracic or abdominal regions with much respiratory movement.
Breath hold cine MRI techniques are used in cardiovascular imaging and provide detailed views of the beating heart in different cardiac axes.
Breath hold imaging requires the full cooperation of the patient, caused by usual MRI scan times from 15 to 20 sec.. In some cases breath holding can be practiced outside the MRI scanner to improve patient cooperation with the examination. Shorter scan times e.g. by parallel imaging techniques, or the administration of oxygen can help the patient to hold the breath during the scan. See also Abdominal Imaging. | | | | | | • View the DATABASE results for 'Breath Hold Imaging' (7).
| | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
In the last years, cardiac MRI techniques have progressively improved. No other noninvasive imaging modality provides the same degree of contrast and temporal resolution for the assessment of cardiovascular anatomy and pathology. Contraindications MRI are the same as for other magnetic resonance techniques.
The primary advantage of MRI is extremely high contrast resolution between different tissue types, including blood. Moreover, MRI is a true 3 dimensional imaging modality and images can be obtained in any oblique plane along the true cardiac axes while preserving high temporal and spatial resolution with precise demonstration of cardiac anatomy without the administration of contrast media.
Due to these properties, MRI can precisely characterize cardiac function and quantify cavity volumes, ejection fraction, and left ventricular mass. In addition, cardiac MRI has the ability to quantify flow (see flow quantification), including bulk flow in vessels, pressure gradients across stenosis, regurgitant fractions and shunt fractions. Valve morphology and area can be determined and the severity of stenosis quantified. In certain disease states, such as myocardial infarction, the contrast resolution of MRI is further improved by the addition of extrinsic contrast agents (see myocardial late enhancement).
A dedicated cardiac coil, and a field strength higher than 1 Tesla is recommended to have sufficient signal. Cardiac MRI acquires ECG gating. Cardiac gating (ECGs) obtained within the MRI scanner, can be degraded by the superimposed electrical potential of flowing blood in the magnetic field. Therefore, excellent contact between the skin and ECG leads is necessary. For male patients, the skin at the lead sites can be shaved. A good cooperation of the patient is necessary because breath holding at the end of expiration is practiced during the most sequences.
See also Displacement Encoding with Stimulated Echoes.
For Ultrasound Imaging (USI) see Cardiac Ultrasound at Medical-Ultrasound-Imaging.com.
See also the related poll results: ' In 2010 your scanner will probably work with a field strength of' and ' MRI will have replaced 50% of x-ray exams by' | | | | | | • View the DATABASE results for 'Cardiac MRI' (15).
| | | • View the NEWS results for 'Cardiac MRI' (15).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
MRI technology visualizes heart metabolism in real time Friday, 18 November 2022 by medicalxpress.com | | |
Even early forms of liver disease affect heart health, Cedars-Sinai study finds Thursday, 8 December 2022 by www.eurekalert.org | | |
MRI sheds light on COVID vaccine-associated heart muscle injury Tuesday, 15 February 2022 by www.sciencedaily.com | | |
Radiologists must master cardiac CT, MRI to keep pace with demand: The heart is not a magical organ Monday, 1 March 2021 by www.radiologybusiness.com | | |
Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) in the heart (myocardium) Sunday, 30 August 2020 by github.com | | |
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence Wednesday, 8 July 2020 by medicalxpress.co | | |
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times Wednesday, 19 February 2020 by www.dicardiology.com | | |
Controlling patient's breathing makes cardiac MRI more accurate Friday, 13 May 2016 by www.upi.com | | |
Precise visualization of myocardial injury: World's first patient-based cardiac MRI study using 7T MRI Wednesday, 10 February 2016 by medicalxpress.com | | |
New technique could allow for safer, more accurate heart scans Thursday, 10 December 2015 by www.gizmag.com |
|
| |
| | | | | |
| |
|
Cardiovascular MR imaging includes the complete anatomical display of the heart with CINE imaging of all phases of the heartbeat. Ultrafast techniques make breath hold three-dimensional coverage of the heart in different cardiac axes feasible. Cardiac MRI provides reliable anatomical and functional assessment of the heart and evaluation of myocardial viability and coronary artery disease by a noninvasive diagnostic imaging technique.
Cardiovascular MRI offers potential advantages over radioisotopic techniques because it provides superior spatial resolution, does not use ionizing radiation, has no imaging orientations constraints and contrast resolution better than echocardiography. It also offers direct visualization and characterization of atherosclerotic plaques and diseased vessel walls and surrounding tissues in cardiovascular research.
MRI perfusion approaches measure the alteration of regional myocardial magnetic properties after the intravenous injection of contrast agents and assess the extent of injury after a myocardial infarction and the presence of myocardial viability with a technique based on late enhancement. Extracellular MRI contrast agents, like Gd-DTPA, accumulate only in irreversibly damaged myocardium after a time period of at least 10 minutes.
This type of patients may also have an implanted cardiac stent, bypass or a cardiac pacemaker and special caution should be observed on the MRI safety and the contraindications. While a number of coronary stents have been tested and reported to be MRI compatible, coronary stents must be assessed on an individual basis, with the medical team weighing the risks and benefits of the MRI procedure.
Cardiac MRI overview:
•
Calculation of ventricular volume, myocardial mass and wall thickness
•
Functional parameters
•
Description of a stenosis or aneurysma
•
Anatomical display of the heart, vessels and the surrounding tissue
Cardiovascular MRI has become one of the most effective noninvasive imaging techniques for almost all groups of heart and vascular disease. | | | | | | • View the DATABASE results for 'Cardiovascular Imaging' (18).
| | | • View the NEWS results for 'Cardiovascular Imaging' (6).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Cine sequences used in cardiovascular MRI are collection of images (usually at the same spatial location) covering of one full period of cardiac cycle or over several periods in order to obtain complete coverage.
The pulse sequence used, is either a standard gradient echo pulse sequence, a segmented data acquisition, a gradient echo EPI sequence or a gradient echo with balanced gradient waveform.
In cardiac gating studies it is possible to assign consecutive lines either to different images, yielding a multiphase sequence with as many images as lines, or the lines are grouped together into segments and assigned to the same image. The overall time to acquire such a segment has to be small compared to the RR-interval of the cardiac cycle, i. e. 50 ms, and hence contains typically 8 to 16 image lines.
This strategy is called segmented data acquisition, and has the advantage of reducing overall imaging time for cardiac images so that they can be acquired within a breath hold, but obviously decreasing the temporal resolution of each individual image.
This method shows dynamic processes, such as the ejection of blood out of the heart into the aorta, by means of fast imaging and displaying the resulting images in a sequential-loop, the impression of a real-time movie is generated. Ejection fractions and stroke volumes calculated from these cine MRI images in different cardiac axes have been shown to be more accurate than any other imaging modality. See also Cardiac Gating. | | | | | | • View the DATABASE results for 'Cine Sequence' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | | |
| | 1 - 5 (of 7) nextResult Pages : [1] [2] |
| |
|
| |
| Look Ups |
| |