| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Cardiac MRI' found in 1 term [] and 15 definitions [], (+ 19 Boolean[] results
| 1 - 5 (of 35) nextResult Pages : [1] [2 3 4] [5 6 7] | | | | Searchterm 'Cardiac MRI' was also found in the following services: | | | | |
| | |
Cardiac MRI | |
| |
|
In the last years, cardiac MRI techniques have progressively improved. No other noninvasive imaging modality provides the same degree of contrast and temporal resolution for the assessment of cardiovascular anatomy and pathology. Contraindications MRI are the same as for other magnetic resonance techniques.
The primary advantage of MRI is extremely high contrast resolution between different tissue types, including blood. Moreover, MRI is a true 3 dimensional imaging modality and images can be obtained in any oblique plane along the true cardiac axes while preserving high temporal and spatial resolution with precise demonstration of cardiac anatomy without the administration of contrast media.
Due to these properties, MRI can precisely characterize cardiac function and quantify cavity volumes, ejection fraction, and left ventricular mass. In addition, cardiac MRI has the ability to quantify flow (see flow quantification), including bulk flow in vessels, pressure gradients across stenosis, regurgitant fractions and shunt fractions. Valve morphology and area can be determined and the severity of stenosis quantified. In certain disease states, such as myocardial infarction, the contrast resolution of MRI is further improved by the addition of extrinsic contrast agents (see myocardial late enhancement).
A dedicated cardiac coil, and a field strength higher than 1 Tesla is recommended to have sufficient signal. Cardiac MRI acquires ECG gating. Cardiac gating (ECGs) obtained within the MRI scanner, can be degraded by the superimposed electrical potential of flowing blood in the magnetic field. Therefore, excellent contact between the skin and ECG leads is necessary. For male patients, the skin at the lead sites can be shaved. A good cooperation of the patient is necessary because breath holding at the end of expiration is practiced during the most sequences.
See also Displacement Encoding with Stimulated Echoes.
For Ultrasound Imaging (USI) see Cardiac Ultrasound at Medical-Ultrasound-Imaging.com.
See also the related poll results: ' In 2010 your scanner will probably work with a field strength of' and ' MRI will have replaced 50% of x-ray exams by' | | | | | | | • Share the entry 'Cardiac MRI': | | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
MRI technology visualizes heart metabolism in real time Friday, 18 November 2022 by medicalxpress.com | | |
Even early forms of liver disease affect heart health, Cedars-Sinai study finds Thursday, 8 December 2022 by www.eurekalert.org | | |
MRI sheds light on COVID vaccine-associated heart muscle injury Tuesday, 15 February 2022 by www.sciencedaily.com | | |
Radiologists must master cardiac CT, MRI to keep pace with demand: The heart is not a magical organ Monday, 1 March 2021 by www.radiologybusiness.com | | |
Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) in the heart (myocardium) Sunday, 30 August 2020 by github.com | | |
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence Wednesday, 8 July 2020 by medicalxpress.co | | |
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times Wednesday, 19 February 2020 by www.dicardiology.com | | |
Controlling patient's breathing makes cardiac MRI more accurate Friday, 13 May 2016 by www.upi.com | | |
Precise visualization of myocardial injury: World's first patient-based cardiac MRI study using 7T MRI Wednesday, 10 February 2016 by medicalxpress.com | | |
New technique could allow for safer, more accurate heart scans Thursday, 10 December 2015 by www.gizmag.com |
|
| |
| | | Searchterm 'Cardiac MRI' was also found in the following service: | | | | |
| | |
| |
|
Cardiovascular MR imaging includes the complete anatomical display of the heart with CINE imaging of all phases of the heartbeat. Ultrafast techniques make breath hold three-dimensional coverage of the heart in different cardiac axes feasible. Cardiac MRI provides reliable anatomical and functional assessment of the heart and evaluation of myocardial viability and coronary artery disease by a noninvasive diagnostic imaging technique.
Cardiovascular MRI offers potential advantages over radioisotopic techniques because it provides superior spatial resolution, does not use ionizing radiation, has no imaging orientations constraints and contrast resolution better than echocardiography. It also offers direct visualization and characterization of atherosclerotic plaques and diseased vessel walls and surrounding tissues in cardiovascular research.
MRI perfusion approaches measure the alteration of regional myocardial magnetic properties after the intravenous injection of contrast agents and assess the extent of injury after a myocardial infarction and the presence of myocardial viability with a technique based on late enhancement. Extracellular MRI contrast agents, like Gd-DTPA, accumulate only in irreversibly damaged myocardium after a time period of at least 10 minutes.
This type of patients may also have an implanted cardiac stent, bypass or a cardiac pacemaker and special caution should be observed on the MRI safety and the contraindications. While a number of coronary stents have been tested and reported to be MRI compatible, coronary stents must be assessed on an individual basis, with the medical team weighing the risks and benefits of the MRI procedure.
Cardiac MRI overview:
•
Calculation of ventricular volume, myocardial mass and wall thickness
•
Description of a stenosis or aneurysma
•
Anatomical display of the heart, vessels and the surrounding tissue
Cardiovascular MRI has become one of the most effective noninvasive imaging techniques for almost all groups of heart and vascular disease. | | | | | | • View the DATABASE results for 'Cardiovascular Imaging' (18).
| | | • View the NEWS results for 'Cardiovascular Imaging' (6).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Coronary Angiography' (7).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Cardiac MRI' was also found in the following services: | | | | |
| | |
| |
|
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.
For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com. | | | | • View the DATABASE results for 'Myocardial Late Enhancement' (6).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Cardiac MRI' was also found in the following service: | | | | |
| | |
| |
|
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast
are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo ( bTFE), Fast Imaging with Steady Precession ( TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG). | | | | | | • View the DATABASE results for 'Balanced Sequence' (5).
| | | | Further Reading: | News & More:
|
|
| |
| | | | |
| | 1 - 5 (of 35) nextResult Pages : [1] [2 3 4] [5 6 7] |
| |
|
| |
| Look Ups |
| |