Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Cine' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Cine' found in 5 terms [] and 52 definitions []
previous     31 - 35 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
Searchterm 'Cine' was also found in the following services: 
spacer
News  (103)  Resources  (80)  Forum  (12)  
 
Intera Achieva CV™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/main/products/mri/products/intera_achievacv/ From Philips Medical Systems;
The Intera Achieva CV is focused on cardiovascular imaging research and development, generating technology on the cutting edge for modern clinical needs, like easy coronary artery imaging, the evaluation of flow effects in vessels and peripheral angiography with optimal resolution per station.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore compact
Standard: Head, body, cardiac, optional phased array: Spine, pediatric, 3rd party connector; Optional SENSE? coils for all applications
Optional
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, Modified-SE, IR (T1, T2, PD), STIR, FLAIR, SPIR, FFE, T1-FFE, T2-FFE, Balanced FFE, TFE, Balanced TFE, Dynamic, Keyhole, 3D, Multi Chunk 3D, Multi Stack 3D, K Space Shutter, MTC, TSE, Dual IR, DRIVE, EPI, Cine, 2DMSS, DAVE, Mixed Mode; Angiography: Inflow MRA, TONE, PCA, CE MRA
IMAGING MODES
Single Slice 2D , Multi Single Slice 2D, Multi Slice 2D, 3D, Multi Chunk 3D, Multi Stack 3D
FOV
Over 50 cm
0.05 mm
128 x 128, 256 x 256,512 x 512,1024 x 1024 (64 for Bold img)
MEASURING MATRIX
Variable in 1% increments
PIXEL INTENSITY
Lum.: 120 cd/m2; contrast: 150:1
Variable (op. param. depend.)
60 x 60 cm
POWER REQUIREMENTS
380/400 V
CRYOGEN USE
0.03 L/hr helium
STRENGTH
up to 33 mT/m
5-GAUSS FRINGE FIELD
2.4 m / 3.8 m
Passive and dynamic
spacer
 
Further Reading:
  News & More:
Coronary Artery Disease: Combined Stress MR Imaging Protocol-One-Stop Evaluation of Myocardial Perfusion and Function1
   by radiology.rsnajnls.org    
Searchterm 'Cine' was also found in the following services: 
spacer
Radiology  (35) Open this link in a new windowUltrasound  (56) Open this link in a new window
Legal Requirements
 
mri safety guidance
MRI Safety Guidance
The owner of MRI equipment has to ensure that the equipment does fulfill the local requirements.
In some countries, the requirements are more stringent than in others; in other countries, they are nonexistent.
The user in general is unable to check power output, gradient strength, or even field strength. The manufacturer has to cover authorized hardware and software updates after the initial installation and has to give guarantee for the requirements. Specially designed computer programs usually supervise the power output of MRI devices and will not allow or will interrupt any imaging or spectroscopy procedure exceeding those limits considered safe.

See also European Medicines Agency, FDA information:
www.fda.gov/cdrh/safety/mrisafety.html
spacer

• View the DATABASE results for 'Legal Requirements' (3).Open this link in a new window

 
Further Reading:
  News & More:
A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems
   by govpulse.us    
MRI Resources 
Universities - Portals - Service and Support - MRI Physics - MR Myelography - Lung Imaging
 
MRI EquipmentInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
The MRI equipment consists of following components:
The magnet generates the magnetic field.
Shim coils make the magnetic field homogeneous.
Radio frequency coils transmit the radio signal into the body part being imaged.
Receiver coils detect the returning radio signals.
Gradient coils provide spatial localization of the signals.
Shielding coils produce a magnetic field that cancels the field from primary coils in regions where it is not desired.
The computer reconstructs the signals into the image.
The MRI scanner room is shielded by a faraday shield.
Different cooling systems cool the magnet, the scanner room and the technique room.

Better MRI equipment and software design along with the latest information technology improves system maintenance and overall communication. Software and digital imaging and communications in medicine (DICOM) compatibility allows to network into hospital databases, helps to modify pulse sequences, data post processing, and archiving via picture archiving and communication system (PACS).

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Radiography
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Ultrasound System Performance
spacer

• View the DATABASE results for 'MRI Equipment' (13).Open this link in a new window


• View the NEWS results for 'MRI Equipment' (4).Open this link in a new window.
 
Further Reading:
  News & More:
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
MRI safety targeted as new group offers credentialing test
Monday, 12 January 2015   by www.modernhealthcare.com    
Audio/Video System helps patients relax during MRI scans
Monday, 8 December 2014   by news.thomasnet.com    
Dräger introduces anaesthesia system for MRI environment
Wednesday, 12 December 2007   by www.mtbeurope.info    
Searchterm 'Cine' was also found in the following services: 
spacer
News  (103)  Resources  (80)  Forum  (12)  
 
MRI History
 
•
Sir Joseph Larmor (1857-1942) developed the equation that the angular frequency of precession of the nuclear spins being proportional to the strength of the magnetic field. [Larmor relationship]
•
In the 1930's, Isidor Isaac Rabi (Columbia University) succeeded in detecting and measuring single states of rotation of atoms and molecules, and in determining the mechanical and magnetic moments of the nuclei.
•
Felix Bloch (Stanford University) and Edward Purcell (Harvard University) developed instruments, which could measure the magnetic resonance in bulk material such as liquids and solids. (Both honored with the Nobel Prize for Physics in 1952.) [The birth of the NMR spectroscopy]
•
In the early 70's, Raymond Damadian (State University of New York) demonstrated with his NMR device, that there are different T1 relaxation times between normal and abnormal tissues of the same type, as well as between different types of normal tissues.
•
In 1973, Paul Lauterbur (State University of New York) described a new imaging technique that he termed Zeugmatography. By utilizing gradients in the magnetic field, this technique was able to produce a two-dimensional image (back-projection). (Through analysis of the characteristics of the emitted radio waves, their origin could be determined.) Peter Mansfield further developed the utilization of gradients in the magnetic field and the mathematically analysis of these signals for a more useful imaging technique. (Paul C Lauterbur and Peter Mansfield were awarded with the 2003 Nobel Prize in Medicine.)
•
In 1975, Richard Ernst introduced 2D NMR using phase and frequency encoding, and the Fourier Transform. Instead of Paul Lauterbur's back-projection, he timely switched magnetic field gradients ('NMR Fourier Zeugmatography'). [This basic reconstruction method is the basis of current MRI techniques.]
•
1977/78: First images could be presented. A cross section through a finger by Peter Mansfield and Andrew A. Maudsley. Peter Mansfield also could present the first image through the abdomen.
•
In 1977, Raymond Damadian completed (after 7 years) the first MR scanner (Indomitable). In 1978, he founded the FONAR Corporation, which manufactured the first commercial MRI scanner in 1980. Fonar went public in 1981.
•
1981: Schering submitted a patent application for Gd-DTPA dimeglumine.
•
1982: The first 'magnetization-transfer' imaging by Robert N. Muller.
•
In 1983, Toshiba obtained approval from the Ministry of Health and Welfare in Japan for the first commercial MRI system.
•
In 1984, FONAR Corporation receives FDA approval for its first MRI scanner.
•
1986: Jürgen Hennig, A. Nauerth, and Hartmut Friedburg (University of Freiburg) introduced RARE (rapid acquisition with relaxation enhancement) imaging. Axel Haase, Jens Frahm, Dieter Matthaei, Wolfgang Haenicke, and Dietmar K. Merboldt (Max-Planck-Institute, Göttingen) developed the FLASH (fast low angle shot) sequence.
•
1988: Schering's MAGNEVIST gets its first approval by the FDA.
•
In 1991, fMRI was developed independently by the University of Minnesota's Center for Magnetic Resonance Research (CMRR) and Massachusetts General Hospital's (MGH) MR Center.
•
From 1992 to 1997 Fonar was paid for the infringement of it's patents from 'nearly every one of its competitors in the MRI industry including giant multi-nationals as Toshiba, Siemens, Shimadzu, Philips and GE'.
•
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'MRI History' (6).Open this link in a new window


• View the NEWS results for 'MRI History' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic Resonance Imaging, History & Introduction
2000   by www.cis.rit.edu    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
Fonar Our History
   by www.fonar.com    
  News & More:
Scientists win Nobels for work on MRI
Tuesday, 10 June 2003   by usatoday30.usatoday.com    
2001 Lemelson-MIT Lifetime Achievement Award Winner
   by web.mit.edu    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Searchterm 'Cine' was also found in the following services: 
spacer
Radiology  (35) Open this link in a new windowUltrasound  (56) Open this link in a new window
Mallinckrodt, Inc.MRI Resource Directory:
 - Manufacturers -
 
www.mallinckrodt.com Mallinckrodt, a Tyco Healthcare company makes and distributes products for respiratory care; bulk and dosage pharmaceuticals, primarily for pain relief and addiction therapy; and imaging agents for magnetic resonance, ultrasound, X-ray, and nuclear medicine applications. With worldwide manufacturing and distribution facilities, as well as worldwide sales offices, Mallinckrodt sells its products worldwide.
GastroMARK® is marketed in the United States by Mallinckrodt, Inc.

In June 2007 Tyco International Ltd. completed the separation of its healthcare business, which is named Covidien. Mallinckrodt, Inc. is now part of Covidien Ltd.

MRI Contrast Agents:
•
•
Contact Information
MAIL
Mallinckrodt, Inc.
675 McDonnell Blvd.
Hazelwood, MO 63042
USA
PHONE
US: (888)744-1414
International: +1-314-654-3177
FAX
+1-314-654-5380
E-MAIL
Imaging Products Customer Service:
US: Imaging Customer Service
International: icsstl@mkg.com
spacer
 
Further Reading:
  Basics:
Guerbet Completes Acquisition of Mallinckrodt’s Contrast Media and Delivery Systems Business
Sunday, 29 November 2015   by www.itnonline.com    
  News & More:
Covidien Completes Spin Off, Mallinckrodt Starts Trading On NYSE
Monday, 1 July 2013   by www.rttnews.com    
MRI Resources 
Education - Raman Spectroscopy - Libraries - Process Analysis - Cochlear Implant - Journals
 
previous      31 - 35 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]