Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Computer' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Computer' found in 2 terms [] and 35 definitions []
previous     26 - 30 (of 37)     next
Result Pages : [1]  [2 3 4 5 6 7 8]
Searchterm 'Computer' was also found in the following services: 
spacer
News  (38)  Resources  (23)  Forum  (5)  
 
Magnetic Resonance Imaging MRI
 
(MRI) Magnetic resonance imaging is a noninvasive medical imaging technique that uses the interaction between radio frequency pulses, a strong magnetic field and body tissue to obtain images of slices/planes from inside the body. These magnets generate fields from approx. 2000 times up to 30000 times stronger than that of the Earth. The use of nuclear magnetic resonance principles produces extremely detailed pictures of the body tissue without the need for x-ray exposure and gives diagnostic information of various organs.
Measured are mobile hydrogen nuclei (protons are the hydrogen atoms of water, the 'H' in H20), the majority of elements in the body. Only a small part of them contribute to the measured signal, caused by their different alignment in the magnetic field. Protons are capable of absorbing energy if exposed to short radio wave pulses (electromagnetic energy) at their resonance frequency. After the absorption of this energy, the nuclei release this energy so that they return to their initial state of equilibrium.
This transmission of energy by the nuclei as they return to their initial state is what is observed as the MRI signal. The subtle differing characteristic of that signal from different tissues combined with complex mathematical formulas analyzed on modern computers is what enables MRI imaging to distinguish between various organs. Any imaging plane, or slice, can be projected, and then stored or printed.
The measured signal intensity depends jointly on the spin density and the relaxation times (T1 time and T2 time), with their relative importance depending on the particular imaging technique and choice of interpulse times. Any motion such as blood flow, respiration, etc. also affects the image brightness.
Magnetic resonance imaging is particularly sensitive in assessing anatomical structures, organs and soft tissues for the detection and diagnosis of a broad range of pathological conditions. MRI pictures can provide contrast between benign and pathological tissues and may be used to stage cancers as well as to evaluate the response to treatment of malignancies. The need for biopsy or exploratory surgery can be eliminated in some cases, and can result in earlier diagnosis of many diseases.

See also MRI History and Functional Magnetic Resonance Imaging (fMRI).
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Breast MRI Images T2 And T1 Pre - Post Contrast  Open this link in a new window
 Anatomic Imaging of the Shoulder  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Related Searches:
    • Resonance
    • Proton
    • Brain MRI
    • Shoulder MRI
    • Larmor Equation
 
Further Reading:
  Basics:
Bringing More Value to Imaging Departments With MRI
Friday, 4 October 2019   by www.itnonline.com    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
  News & More:
High-resolution MRI enables direct imaging of neuronal activity - DIANA – direct imaging of neuronal activity
Friday, 18 November 2022   by physicsworld.com    
New MRI technique can 'see' molecular changes in the brain
Thursday, 5 September 2019   by medicalxpress.com    
How new MRI technology is transforming the patient experience
Tuesday, 14 May 2019   by newsroom.gehealthcare.com    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
MRI technique allows study of wrist in motion
Monday, 6 January 2014   by www.healthimaging.com    
New imaging technology promising for several types of cancer
Thursday, 29 August 2013   by medicalxpress.com    
MRI method for measuring MS progression validated
Thursday, 19 December 2013   by www.eurekalert.org    
Searchterm 'Computer' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (21) Open this link in a new window
Passive Shielding
 
Magnetic shielding through the use of high permeability material. The iron provides a return path for the stray field lines of magnetic flux and so significantly decreases the flux away from the magnet.
Passive shielding (see also Faraday cage) significantly eases the problems of siting a MR imager in a confined space. Ferromagnetic objects are less prone to being attracted to the magnet, ancillary electronic equipment, credit cards and computer disks can be brought closer to the magnet and the MRI safety limit for pacemaker wearers (the 5 gauss line = 0.5 mT) is reduced from, typically, 10 m to 2 m from the magnet. A passive shield for a whole-body MRI magnet weights many tons. An alternative method of controlling stray field is active shielding.

See also Active Shielding, Magnetic Shielding, Self Shielding and Room Shielding.
spacer

• View the DATABASE results for 'Passive Shielding' (3).Open this link in a new window

 
Further Reading:
  Basics:
Faraday's Law
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Magnetic Sensitivity of MRI Systems to External Iron: The Design Process
   by www.integratedsoft.com    
MRI Resources 
Used and Refurbished MRI Equipment - Diffusion Weighted Imaging - Homepages - Education pool - Distributors - Software
 
Picture Archiving and Communication SystemMRI Resource Directory:
 - PACS -
 
(PACS) A system used to communicate and archive medical imaging data, mostly images and associated textural data generated in a radiology department, and disseminated throughout the hospital. A PACS is usually based on the DICOM (Digital Imaging and Communications in Medicine) standard.
The main components in the PACS are:
•
acquisition devices where the images are acquired,
•
short and longer term archives for storage of digital and textural data,
•
a database and database management,
•
diagnostic and review workstations,
•
software to run the system,
•
a communication network linking the system components,
•
interfaces with other networks (hospital and radiological information systems).

Acquisition devices, which acquire their data in direct digital format, like a MRI system, are most easily integrated into a PACS.
Short term archives need to have rapid access, such as provided by a RAID (redundant array of independent disks), whereas long term archives need not have such rapid access and can be consigned, e.g. to optical disks or a magnetic.
High speed networks are necessary for rapid transmission of imaging data from the short term archive to the diagnostic workstations. Optical fiber, ATM (asynchronous transfer mode), fast or switched Ethernet, are examples of high speed transmission networks, whereas demographic textural data may be transmitted along conventional Ethernet.
Sophisticated software is a major element in any hospital-wide PACS. The software concepts include: preloading or prefetching of historical images pertinent to current examinations, worklists and folders to subdivide the vast mass of data acquired in a PACS in a form, which is easy and practical to access, default display protocols whereby images are automatically displayed on workstation monitors in a prearranged clinically logical order and format, and protocols radiologists can rapidly report worklists of undictated examinations, using a minimum of computer manipulation.
spacer

• View the DATABASE results for 'Picture Archiving and Communication System' (5).Open this link in a new window


• View the NEWS results for 'Picture Archiving and Communication System' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Healthcare IT Yellow Pages PACS / Image Management Directory
   by www.health-infosys-dir.com    
Searchterm 'Computer' was also found in the following services: 
spacer
News  (38)  Resources  (23)  Forum  (5)  
 
Postprocessing
 
MR images can be manipulated for evaluation in various ways. Postprocessing includes: Subtraction, addition, rotation, inversion, multiplanar reconstruction (MPR), maximum intensity projection (MIP), etc.
Subtraction is particularly useful in contrast enhanced MRI examinations (for example breast MRI, brain MRI). The pre contrast images are subtracted from the images after an injection of contrast agents (sometimes also called dye) for a better tumor detection.

See also Computer Aided Detection
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Postprocessing' (11).Open this link in a new window

 
Further Reading:
  Basics:
3D-DOCTOR Tutorial
   by www.ablesw.com    
  News & More:
Improvement of semantic segmentation through transfer learning of multi-class regions with convolutional neural networks on supine and prone breast MRI images
Thursday, 27 April 2023   by www.nature.com    
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times
Wednesday, 19 February 2020   by www.dicardiology.com    
Searchterm 'Computer' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (21) Open this link in a new window
Pulse SequenceForum -
related threadsMRI Resource Directory:
 - Sequences -
 
A pulse sequence is a preselected set of defined RF and gradient pulses, usually repeated many times during a scan, wherein the time interval between pulses and the amplitude and shape of the gradient waveforms will control NMR signal reception and affect the characteristics of the MR images. Pulse sequences are computer programs that control all hardware aspects of the MRI measurement process.
Usual to describe pulse sequences, is to list the repetition time (TR), the echo time (TE), if using inversion recovery, the inversion time (TI) with all times given in milliseconds, and in case of a gradient echo sequence, the flip angle. For example, 3000/30/1000 would indicate an inversion recovery pulse sequence with TR of 3000 msec., TE of 30 msec., and TI of 1000 msec.
Specific pulse sequence weightings are dependent on the field strength, the manufacturer and the pathology.

See also Interpulse Times.
spacer

• View the DATABASE results for 'Pulse Sequence' (96).Open this link in a new window


• View the NEWS results for 'Pulse Sequence' (1).Open this link in a new window.
 
Further Reading:
  Basics:
MYELIN-SELECTIVE MRI: PULSE SEQUENCE DESIGN AND OPTIMIZATION
   by www.imaging.robarts.ca    
Faster speed, better spatial resolution lead 3T benefits
   by sipi.usc.edu    
  News & More:
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries
Thursday, 23 April 2009   by www.eurekalert.org    
MRI Resources 
MRI Training Courses - Sequences - Artifacts - Brain MRI - Functional MRI - Education
 
previous      26 - 30 (of 37)     next
Result Pages : [1]  [2 3 4 5 6 7 8]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]