Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Cryogen' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Cryogen' found in 2 terms [] and 59 definitions []
previous     16 - 20 (of 61)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13]
Searchterm 'Cryogen' was also found in the following services: 
spacer
News  (7)  Resources  (3)  Forum  (3)  
 
MAGNETOM Spectra
 
www.healthcare.siemens.com/magnetic-resonance-imaging/3t-mri-scanner/magnetom-spectra From Siemens Medical Systems;
Received FDA clearance in 2012.
The MAGNETOM Spectra is a cost-optimized high field MRI system with Tim 4G and Dot technologies. The system consumes less energy compared to other 3 Tesla scanners. The magnet-cooling helium is contained in a closed loop, which prevents the gas from escaping and reduces the need for refills. TimTX includes innovative techniques in the radio frequency excitation hardware as well as new application and processing features enabling uniform RF distribution in all body regions.
Device Information and Specification
CLINICAL APPLICATION
Whole Body
CONFIGURATION
Short bore
3 Tesla
Head, spine, torso/ body coil, neurovascular, neck and multi-purpose flex coils. Peripheral vascular, breast, shoulder, knee, wrist, foot//ankle, endorectal optional.
CHANNELS
24
Chemical shift imaging, single voxel spectroscopy
IMAGING TECHNIQUES
iPAT, mSENSE and GRAPPA (image, k-space), noncontrast angiography, radial motion compensation
FOV
0.5 - 45 cm
BORE DIAMETER
or W x H
At isocenter: L-R 60 cm
TABLE CAPACITY
200 kg
MAGNET WEIGHT
7200 kg
DIMENSION H*W*D (gantry included)
173 x 231 x 219 cm
5-GAUSS FRINGE FIELD
2.6 m / 4.6 m
CRYOGEN USE
Zero boil off rate, approx. 10 years
COOLING SYSTEM
Water; single cryogen, 2 stage refrigeration
up to 125 T/m/s
MAX. AMPLITUDE
33 mT/m
Passive, active; first order standard, second order optional
POWER REQUIREMENTS
380 / 400 / 420 / 440 / 460 / 480 V, 3-phase + ground; connection value with chiller 100 kvA /without chiller 60 kVA
spacer
MRI Resources 
Crystallography - Breast Implant - Distributors - RIS - MR Myelography - Universities
 
MAGNETOM Trio™ (TIM System)InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
www.medical.siemens.com/webapp/wcs/stores/servlet/ProductDisplay?storeId=10001&langId=-11&catalogId=-11&catTree=100001%2C12786%2C12754&level=0&productId=145739 From Siemens Medical Systems;
The Magnetom Trio™, a 3T whole body MRI system with Tim (total imaging matrix technology), targets clinical applications such as abdominal, cardiac, spine, whole body and orthopedics. TIM enables flexible coil combinations for high resolution imaging of large anatomical areas without the need to change coils.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore
CP head, CP integrated body coil, neck matrix, breast array, 8-channel knee array, CP wrist, shoulder array, CP extremity
Yes/Mutli-nuclear MRS
PULSE SEQUENCES
SE, IR, 2D/3D TurboSE, Turbo IR, Dark-Fluid IR, True IR, 2D/3D MEDIC, 2D/3D GRE FLASH, 2D/3D GRE FISP, 2D/3D PSIF, 2D TurboFLASH, 3D MP-RAGE, 3D TurboFLASH, 2D/3D TOF angiography, MTC, TONE with 3D TOF MRA, GMR, LOTA
IMAGING MODES
Single, multislice, volume study, multi angle, multi oblique
SINGLE/MULTI SLICE
178 images/sec at 256 x 256 at 100% FOV
40 cm
Min 2D/3D: 0.1/0.05 mm
1024 x 1024 full screen display
MEASURING MATRIX
64 x 64 to 1024 x 1024
10 micrometer
60 cm
MAGNET WEIGHT
12000 kg
H*W*D
221 x 244 x 213 cm
POWER REQUIREMENTS
380/400/420/440/480 V
COOLING SYSTEM TYPE
Single cryogen, 2 stage refrig.
0.12 L/hr helium
STRENGTH
40 - 45 mT/m
200 mT/m/ms
5-GAUSS FRINGE FIELD
3.4 m / 5.9 m
Passive, act.; 1st order std./2nd opt.
spacer
MRI Resources 
Equipment - DICOM - - Jobs pool - Functional MRI - Software
 
MRI SafetyMRI Resource Directory:
 - Safety -
 
There are different types of contraindications that would prevent a person from being examined with an MRI scanner. MRI systems use strong magnetic fields that attract any ferromagnetic objects with enormous force. Caused by the potential risk of heating, produced from the radio frequency pulses during the MRI procedure, metallic objects like wires, foreign bodies and other implants needs to be checked for compatibility. High field MRI requires particular safety precautions. In addition, any device or MRI equipment that enters the magnet room has to be MR compatible. MRI examinations are safe and harmless, if these MRI risks are observed and regulations are followed.

Safety concerns in magnetic resonance imaging include:
•
the magnetic field strength;
•
possible 'missile effects' caused by magnetic forces;
•
the potential for heating of body tissue due to the application of the radio frequency energy;
•
the effects on implanted active devices such as cardiac pacemakers or insulin pumps;
•
magnetic torque effects on indwelling metal (clips, etc.);
•
the audible acoustic noise;
•
danger due to cryogenic liquids;
•
the application of contrast medium;
mri safety guidance
MRI Safety Guidance
It is important to remember when working around a superconducting magnet that the magnetic field is always on. Under usual working conditions the field is never turned off. Attention must be paid to keep all ferromagnetic items at an adequate distance from the magnet. Ferromagnetic objects which came accidentally under the influence of these strong magnets can injure or kill individuals in or nearby the magnet, or can seriously damage every hardware, the magnet itself, the cooling system, etc.. See MRI resources Accidents.
The doors leading to a magnet room should be closed at all times except when entering or exiting the room. Every person working in or entering the magnet room or adjacent rooms with a magnetic field has to be instructed about the dangers. This should include the patient, intensive-care staff, and maintenance-, service- and cleaning personnel, etc..
The 5 Gauss limit defines the 'safe' level of static magnetic field exposure. The value of the absorbed dose is fixed by the authorities to avoid heating of the patient's tissue and is defined by the specific absorption rate. Leads or wires that are used in the magnet bore during imaging procedures, should not form large-radius wire loops. Leg-to-leg and leg-to-arm skin contact should be prevented in order to avoid the risk of burning due to the generation of high current loops if the legs or arms are allowed to touch. The patient's skin should not be in contact with the inner bore of the magnet.
The outflow from cryogens like liquid helium is improbable during normal operation and not a real danger for patients.
The safety of MRI contrast agents is tested in drug trials and they have a high compatibility with very few side effects. The variations of the side effects and possible contraindications are similar to X-ray contrast medium, but very rare. In general, an adverse reaction increases with the quantity of the MRI contrast medium and also with the osmolarity of the compound.

See also 5 Gauss Fringe Field, 5 Gauss Line, Cardiac Risks, Cardiac Stent, dB/dt, Legal Requirements, Low Field MRI, Magnetohydrodynamic Effect, MR Compatibility, MR Guided Interventions, Claustrophobia, MRI Risks and Shielding.
Radiology-tip.comradRadiation Safety,  Ionizing Radiation
spacer
Medical-Ultrasound-Imaging.comUltrasound Safety,  Absorbed Dose
spacer

• View the DATABASE results for 'MRI Safety' (42).Open this link in a new window


• View the NEWS results for 'MRI Safety' (13).Open this link in a new window.
 
Further Reading:
  Basics:
MRI Safety
2001   by www.fda.gov    
What MRI Sequences Produce the Highest Specific Absorption Rate (SAR), and Is There Something We Should Be Doing to Reduce the SAR During Standard Examinations?
Thursday, 16 April 2015   by www.ajronline.org    
Contrast Agents: Safety Profile
   by www.clinical-mri.com    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
Study: Face Masks Unsafe in MRI Machines
Wednesday, 13 July 2022   by www.laboratoryequipment.com    
COVID-19: Attention shifts to MRI infection control
Thursday, 9 July 2020   by https://www.auntminnieeurope.com/index.aspx?sec=ser§sub=def§pag=dis§ItemID=619012    
FDA Releases New Guidance On Establishing Safety, Compatibility Of Passive Implants In MR Environments
Tuesday, 16 December 2014   by www.meddeviceonline.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
Searchterm 'Cryogen' was also found in the following services: 
spacer
News  (7)  Resources  (3)  Forum  (3)  
 
OPART™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www3.toshiba.co.jp/medical/products/mr/opart/index.htm From Toshiba America Medical Systems Inc.;
OPART™ is a 0.35 T superconducting open MR system featuring cryogenless operation. Superconducting speed and performance are combined with the patient access advantages of open MRI design for unmatched clinical versatility. OPART™ features innovative technologies such as digital RF, high speed gradients and optimized RF coils, which support advanced MRI applications.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Quadrature, solenoid and multi-channel configurations
SYNCHRONIZATION
ECG/peripheral optional, respiratory gating
PULSE SEQUENCES
SE, FE, IR, FastSE, FastIR, FastFLAIR, Fast STIR, FastFE, FASE, Hybrid EPI, Multi Shot EPI; Angiography: 2D(gate/non-gate)/3D TOF, SORS-STC
IMAGING MODES
Single, multislice, volume study
55 cm, vertical opening
POWER REQUIREMENTS
380/400/415/440/480 V
COOLING SYSTEM TYPE
Cryogenless
STRENGTH
25 mT/m
Passive, active
spacer

• View the DATABASE results for 'OPART™' (2).Open this link in a new window

MRI Resources 
Distributors - Contrast Agents - Shoulder MRI - Functional MRI - Sequences - Libraries
 
Quench
 
Quenching is the cryogen boil off (liquid helium) which is used to cool the superconducting magnet coils of high field MRI systems. This results in a loss of superconductivity in the magnet, in a rapid increase in the resistivity of the magnet, which generates heat that results in further evaporation of the cryogen.
mri safety guidance
MRI Safety Guidance
A quench can cause total magnet failure and should be avoided.
spacer

• View the DATABASE results for 'Quench' (5).Open this link in a new window

 
Further Reading:
  Basics:
Cryogenic Liquids and their Hazards
   by www.ccohs.ca    
MRI Resources 
MRI Technician and Technologist Schools - Sequences - Functional MRI - Stimulator pool - MR Guided Interventions - MRI Training Courses
 
previous      16 - 20 (of 61)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]