Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Diamagnetism' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Diamagnetism' found in 1 term [] and 6 definitions []
previous     6 - 7 (of 7)     
Result Pages : [1]  [2]
MRI Resources 
Pediatric and Fetal MRI - Jobs pool - Safety pool - Cochlear Implant - Abdominal Imaging - Spectroscopy pool
 
Paramagnetism
 
Paramagnetic materials attract and repel like normal magnets when subject to a magnetic field. This alignment of the atomic dipoles with the magnetic field tends to strengthen it, and is described by a relative magnetic permeability greater than unity. Paramagnetism requires that the atoms individually have permanent dipole moments even without an applied field, which typically implies a partially filled electron shell. In pure Paramagnetism (without an external magnetic field), these atomic dipoles do not interact with one another and are randomly oriented in the absence of an external field, resulting in zero net moment.
Paramagnetic materials in magnetic fields will act like magnets but when the field is removed, thermal motion will quickly disrupt the magnetic alignment. In general, paramagnetic effects are small (magnetic susceptibility of the order of 10-3 to 10-5).
In MRI, gadolinium (Gd) one of these paramagnetic materials is used as a contrast agent. Through interactions between the electron spins of the paramagnetic gadolinium and the water nuclei nearby, the relaxation rates (T1 and T2) of the water protons are increased (T1 and T2 times are decreased), causing an increase in signal on T1 weighted images.

See also contrast agents, magnetism, ferromagnetism, superparamagnetism, and diamagnetism.
spacer
 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
Paramagnetism
Wednesday, 23 November 2005   by en.wikipedia.org    
  News & More:
LEARNING CENTER FOR PARAMAGNETISM
2003   by www.naturesalternatives.com    
MRI Resources 
MRCP - PACS - Abdominal Imaging - Stent - Claustrophobia - Spectroscopy
 
Superparamagnetism
 
Superparamagnetism occurs when the material is composed of very small crystallites (1-10 nm). In this case, even though the temperature is below the Curie or Néel temperature and the thermal energy is not sufficient to overcome the coupling forces between neighboring atoms, the thermal energy is sufficient to change the direction of magnetization of the entire crystallite. The resulting fluctuations in the direction of magnetization cause the magnetic field to average to zero. The material behaves in a manner similar to paramagnetism, except that instead of each individual atom being independently influenced by an external magnetic field, the magnetic moment of the entire crystallite tends to align with the magnetic field.
In MRI superparamagnetic iron oxide is used as a contrast agent.

See also magnetism, ferromagnetism, paramagnetism, and diamagnetism.
spacer

• View the DATABASE results for 'Superparamagnetism' (6).Open this link in a new window

 
Further Reading:
  Basics:
Superparamagnetism
   by en.wikipedia.org    
  News & More:
Imagion (ASX:IBX) share price up 1,166% in a year pursuing adiation-freeâ„¢ cancer tech
Monday, 29 March 2021   by www.fool.com.au    
MRI Resources 
Quality Advice - Research Labs - Developers - NMR - Patient Information - Education pool
 
previous      6 - 7 (of 7)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]