Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Echo Planar Imaging' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Echo Planar Imaging' found in 4 terms [] and 15 definitions [], (+ 2 Boolean[] results
previous     11 - 15 (of 21)     next
Result Pages : [1]  [2 3 4]  [5]
Searchterm 'Echo Planar Imaging' was also found in the following services: 
spacer
News  (1)  Resources  (4)  
 
Functional Magnetic Resonance ImagingMRI Resource Directory:
 - Functional MRI -
 
(fMRI) Functional magnetic resonance imaging is a technique used to determine the dynamic brain function, often based on echo planar imaging, but can also be performed by using contrast agents and observing their first pass effects through brain tissue. Functional magnetic resonance imaging allows insights in a dysfunctional brain as well as into the basic workings of the brain.
The in functional brain MRI most frequently used effect to assess brain function is the blood oxygenation level dependent contrast (BOLD) effect, in which differential changes in brain perfusion and their resultant effect on the regional distribution of oxy- to deoxyhaemoglobin are observable because of the different 'intrinsic contrast media' effects of the two haemoglobin forms. Increased brain activity causes an increased demand for oxygen, and the vascular system actually overcompensates for this, increasing the amount of oxygenated haemoglobin. Because deoxygenated haemoglobin attenuates the MR signal, the vascular response leads to a signal increase that is related to the neural activity.
Functional imaging relates body function or thought to specific locations where the neural activity is taking place. The brain is scanned at low resolution but at a fast rate (typically once every 2-3 seconds). Structural MRI together with fMRI provides an anatomical baseline and best spatial resolution.
Interactions can also be seen from the motor cortex to the cerebellum or basal ganglia in the case of a movement disorder such as ataxia. For example: by a finger movement the briefly increase in the blood circulation of the appropriate part of the brain controlling that movement, can be measured.
spacer
 
• Related Searches:
    • Blood Oxygenation Level Dependent Contrast
    • Brain MRI
    • Magnetic Resonance Imaging MRI
    • Diffusion Tensor Imaging
    • Special Imaging
 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
  News & More:
New AI application reads eye movements
Tuesday, 16 November 2021   by www.news-medical.net    
Functional MRI Can Provide Clearer Picture of Unresponsive COVID-19 Patient's Brain Function and Potential for Recovery
Tuesday, 26 January 2021   by www.hospimedica.com    
Scientists first studied the brain of birds while moving
Sunday, 20 September 2020   by freenews.live    
MRI Technique Used to Identify Future Risk of Binge Drinking
Monday, 6 January 2020   by www.diagnosticimaging.com    
Functional MRI may help identify new, effective painkillers for chronic pain sufferers
Thursday, 4 February 2016   by www.eurekalert.org    
Study shows functional MRI differences in working memory in people with primary insomnia
Saturday, 31 August 2013   by www.news-medical.net    
Functional magnetic resonance imaging may improve diagnosis of autism
Tuesday, 31 May 2011   by www.dnaindia.com    
Using fMRI to study brain development
Friday, 30 November 2007   by www.eurekalert.org    
MRI Resources 
Equipment - Devices - Implant and Prosthesis pool - Quality Advice - Online Books - Service and Support
 
Generalized Autocalibrating Partially Parallel AcquisitionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(GRAPPA) GRAPPA is a parallel imaging technique to speed up MRI pulse sequences. The Fourier plane of the image is reconstructed from the frequency signals of each coil (reconstruction in the frequency domain).
Parallel imaging techniques like GRAPPA, auto-SMASH and VD-AUTO-SMASH are second and third generation algorithms using k-space undersampling. A model from a part of the center of k-space is acquired, to find the coefficients of the signals from each coil element, and to reconstruct the missing intermediary lines. The acquisition of these additional lines is a form of self-calibration, which lengthens the overall short scan time. The acquisition of these k-space lines provides mapping of the whole field as well as data for the image contrast.
Algorithms of the GRAPPA type work better than the SENSE type in heterogeneous body parts like thoracic or abdominal imaging, or in pulse sequences like echo planar imaging. This is caused by differences between the sensitivity map and the pulse sequence (e.g. artifacts) or an unreliable sensitivity map.
spacer

• View the DATABASE results for 'Generalized Autocalibrating Partially Parallel Acquisition' (2).Open this link in a new window

MRI Resources 
Claustrophobia - Cochlear Implant - Collections - Nerve Stimulator - Absorption and Emission - Artifacts
 
Motion Probing Gradient
 
Many MR imaging techniques using Motion Probing Gradients (MPG's) such as Spin Echo (SE), Stimulated Echo (STE), Rapid Acquisition with Relaxation Enhancement (RARE), Turbo-SE, and SE-EPI (Echo Planar Imaging for Spin echo acquisition), Spiral imaging, and Projection reconstruction including PROPELLER are applicable to DWI. In diffusion weighted imaging, 2 MPG's are required. The MPG's are put symmetrically into both sides of a 180° or 90° RF pulse to change the direction of the magnetized spin in the X-Y plane for spin echo or stimulated echo acquisition.
spacer

• View the DATABASE results for 'Motion Probing Gradient' (2).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Searchterm 'Echo Planar Imaging' was also found in the following services: 
spacer
News  (1)  Resources  (4)  
 
Nerve Conductivity
 
Rapid echo planar imaging and high-performance MRI gradient systems create fast-switching magnetic fields that can stimulate muscle and nerve tissues produced by either changing the electrical resistance or the potential of the excitation. There are apparently no effects on the conduction of impulses in the nerve fiber up to field strength of 0.1 T. A preliminary study has indicated neurological effects by exposition to a whole body imager at 4.0 T. Theoretical examinations argue that field strengths of 24 T are required to produce a 10% reduction of nerve impulse conduction velocity.
Nerve stimulations during MRI scans can be induced by very rapid changes of the magnetic field. This stimulation may occur for example during diffusion weighted sequences or diffusion tensor imaging and can result in muscle contractions caused by effecting motor nerves. The so-called magnetic phosphenes are attributed to magnetic field variations and may occur in a threshold field change of between 2 and 5 T/s. Phosphenes are stimulations of the optic nerve or the retina, producing a flashing light sensation in the eyes. They seem not to cause any damage in the eye or the nerve.
Varying magnetic fields are also used to stimulate bone-healing in non-unions and pseudarthroses. The reasons why pulsed magnetic fields support bone-healing are not completely understood. The mean threshold levels for various stimulations are 3600 T/s for the heart, 900 T/s for the respiratory system, and 60 T/s for the peripheral nerves.
Guidelines in the United States limit switching rates at a factor of three below the mean threshold for peripheral nerve stimulation. In the event that changes in nerve conductivity happens, the MRI scan parameters should be adjusted to reduce dB/dt for nerve stimulation.
spacer

• View the DATABASE results for 'Nerve Conductivity' (2).Open this link in a new window

 
Further Reading:
  Basics:
Electrical eddy currents in the human body: MRI scans and medical implants
   by www.phy.olemiss.edu    
  News & More:
NERVE STIMULATORS
Tuesday, 18 January 2005   by www.health.adelaide.edu.au    
Conductivity tensor mapping of the human brain using diffusion tensor MRI
   by www.pnas.org    
MRI Resources 
Nerve Stimulator - Cardiovascular Imaging - MRI Technician and Technologist Jobs - Services and Supplies - Equipment - Open Directory Project
 
Oscillating Gradient System
 
A gradient system, which changes the readout gradient sinusoidally by connecting a capacitor to the self inductance generated by the gradient coil. Oscillating gradient systems were initially used in the development of EPI.
This electrical oscillating circuit can be driven with minimal power to generate the gradient amplitudes and switching frequencies required for echo planar imaging (EPI).
Disadvantages are that it is not possible to use any arbitrary trapezoidal gradient wave form as can be used in standard MRI. Also, the gradients are inflexible and cannot be used to create other ultrafast sequences and beside, nonlinear sampling of the MR signal is required.
spacer

• View the DATABASE results for 'Oscillating Gradient System' (2).Open this link in a new window

MRI Resources 
Stimulator pool - Abdominal Imaging - Breast MRI - MRI Technician and Technologist Jobs - Musculoskeletal and Joint MRI - Veterinary MRI
 
previous      11 - 15 (of 21)     next
Result Pages : [1]  [2 3 4]  [5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]