Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Echo Train' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Echo Train' found in 2 terms [] and 17 definitions [], (+ 6 Boolean[] results
previous     6 - 10 (of 25)     next
Result Pages : [1]  [2 3 4]  [5]
Searchterm 'Echo Train' was also found in the following services: 
spacer
News  (1)  Forum  (6)  
 
Carr Purcell Meiboom Gill SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(CPMG) This type of spin echo pulse sequence consisting of a 90° radio frequency pulse followed by an echo train induced by successive 180° pulses and is useful for measuring T2 weighted images. It is a modification of the Carr-Purcell RF pulse sequence, with 90° phase shift in the rotating frame of reference between the 90° pulse and the subsequent 180° pulses in order to reduce accumulating effects of imperfections in the 180° pulses. Suppression of effects of pulse error accumulation can alternatively be achieved by switching phases of the 180° pulses by 180°.
 
Images, Movies, Sliders:
 MRI - Anatomic Imaging of the Ankle 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Neck  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Pulse Sequence Timing Diagram
    • Magnetic Resonance Imaging MRI
    • MRI
    • Pulse Sequence
    • Spin Echo Imaging
 
Further Reading:
  Basics:
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
Magnetic resonance imaging
   by www.scholarpedia.org    
  News & More:
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
MRI Resources 
Resources - Image Quality - Sequences - Safety pool - Liver Imaging - Cochlear Implant
 
Double Contrast SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This sequence type is a TSE counterpart to double echo sequences. To keep the echo train as short as possible, only echoes for PD and T2 weighted images, where the phase encoding gradient has a small amplitude, are measured separately. The echoes that determine resolution are used in both raw data matrices. This reduces the number of echoes required. Also the SAR drops and more slices can be acquired in the same repetition time.
spacer
 
Further Reading:
  Basics:
BASIC PRINCIPLES OF MR IMAGING
   by spinwarp.ucsd.edu    
MRI Resources 
Spine MRI - Manufacturers - Calculation - Safety Products - DICOM - Pacemaker
 
Driven Equilibrium Fourier TransformationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(DEFT) This sequence enhances fluid signal by using a 'tip-up' pulse following a spin echo train.
See Driven Equilibrium and Fourier Transformation Imaging.
spacer
Searchterm 'Echo Train' was also found in the following services: 
spacer
News  (1)  Forum  (6)  
 
Echo Planar ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Echo Planar Imaging Timing Diagram (EPI) Echo planar imaging is one of the early magnetic resonance imaging sequences (also known as Intascan), used in applications like diffusion, perfusion, and functional magnetic resonance imaging. Other sequences acquire one k-space line at each phase encoding step. When the echo planar imaging acquisition strategy is used, the complete image is formed from a single data sample (all k-space lines are measured in one repetition time) of a gradient echo or spin echo sequence (see single shot technique) with an acquisition time of about 20 to 100 ms. The pulse sequence timing diagram illustrates an echo planar imaging sequence from spin echo type with eight echo train pulses. (See also Pulse Sequence Timing Diagram, for a description of the components.)
In case of a gradient echo based EPI sequence the initial part is very similar to a standard gradient echo sequence. By periodically fast reversing the readout or frequency encoding gradient, a train of echoes is generated.
EPI requires higher performance from the MRI scanner like much larger gradient amplitudes. The scan time is dependent on the spatial resolution required, the strength of the applied gradient fields and the time the machine needs to ramp the gradients.
In EPI, there is water fat shift in the phase encoding direction due to phase accumulations. To minimize water fat shift (WFS) in the phase direction fat suppression and a wide bandwidth (BW) are selected. On a typical EPI sequence, there is virtually no time at all for the flat top of the gradient waveform. The problem is solved by "ramp sampling" through most of the rise and fall time to improve image resolution.
The benefits of the fast imaging time are not without cost. EPI is relatively demanding on the scanner hardware, in particular on gradient strengths, gradient switching times, and receiver bandwidth. In addition, EPI is extremely sensitive to image artifacts and distortions.
spacer

• View the DATABASE results for 'Echo Planar Imaging' (19).Open this link in a new window


• View the NEWS results for 'Echo Planar Imaging' (1).Open this link in a new window.
 
Further Reading:
  Basics:
New Imaging Method Makes Brain Scans 7 Times Faster
Sunday, 9 January 2011   by www.dailytech.com    
MRI Resources 
DICOM - Hospitals - Stent - Education pool - Mobile MRI - Distributors
 
Fast Relaxation Fast Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(FRFSE, FR-FSE) The fast relaxation fast spin echo sequence provides high signal intensity of fluids even with short repetition times, and can be used with parallel imaging techniques for short breath hold imaging or respiratory gating for free-breathing, high isotropic resolution MR imaging. After signal decay at the end of the echo train, a negative 90° pulse align spins with long T2 from the transverse plane to the longitudinal plane, leading to a much faster recovery of tissues with long T2 time to the equilibrium and thus better contrast between tissues with long and short T2.
Fast relaxation FSE has advantages also for volumetric imaging as the TR can be substantially reduced and thus the scan time. The sequence can be post processed with maximum intensity projection, surface or volume rendering algorithms to visualize anatomical details in brain or spine MRI. Cerebro spinal fluid pulsation artifacts, often problematic in the cervical or thoracic spine may be reduced by radial sampling, in particular when combined with acquisitions of the PROPELLER type.

See also Fast spin echo, Driven Equilibrium.
 
Images, Movies, Sliders:
 Shoulder Sagittal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
 Shoulder Coronal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
MRI Resources 
IR - Veterinary MRI - Stimulator pool - - Pregnancy - MR Myelography
 
previous      6 - 10 (of 25)     next
Result Pages : [1]  [2 3 4]  [5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]