Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Excitation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Excitation' found in 10 terms [] and 86 definitions []
previous     51 - 55 (of 96)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
Searchterm 'Excitation' was also found in the following services: 
spacer
News  (1)  Forum  (11)  
 
Inversion Recovery SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Inversion Recovery Sequence Timing Diagram (IR) The inversion recovery pulse sequence produces signals, which represent the longitudinal magnetization existing after the application of a 180° radio frequency pulse that rotates the magnetization Mz into the negative plane. After an inversion time (TI - time between the starting 180° pulse and the following 90° pulse), a further 90° RF pulse tilts some or all of the z-magnetization into the xy-plane, where the signal is usually rephased with a 180° pulse as in the spin echo sequence. During the initial time period, various tissues relax with their intrinsic T1 relaxation time.
In the pulse sequence timing diagram, the basic inversion recovery sequence is illustrated. The 180° inversion pulse is attached prior to the 90° excitation pulse of a spin echo acquisition. See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The inversion recovery sequence has the advantage, that it can provide very strong contrast between tissues having different T1 relaxation times or to suppress tissues like fluid or fat. But the disadvantage is, that the additional inversion radio frequency RF pulse makes this sequence less time efficient than the other pulse sequences.

Contrast values:
PD weighted: TE: 10-20 ms, TR: 2000 ms, TI: 1800 ms
T1 weighted: TE: 10-20 ms, TR: 2000 ms, TI: 400-800 ms
T2 weighted: TE: 70 ms, TR: 2000 ms, TI: 400-800 ms

See also Inversion Recovery, Short T1 Inversion Recovery, Fluid Attenuation Inversion Recovery, and Acronyms for 'Inversion Recovery Sequence' from different manufacturers.
 
Images, Movies, Sliders:
 Brain MRI Inversion Recovery  Open this link in a new window
    
 Knee MRI Sagittal STIR 002  Open this link in a new window
 Brain MRI Coronal FLAIR 001  Open this link in a new window
    
 
spacer
 
• Related Searches:
    • Double Inversion Recovery T1 Measurement
    • Brain MRI
    • Short T1 Inversion Recovery
    • Knee MRI
    • Saturation Pulses
 
Further Reading:
  Basics:
The equation for a repeated inversion recovery sequence
Contrast mechanisms in magnetic resonance imaging
2004   by www.iop.org    
  News & More:
FLAIR Vascular Hyperintensity: An Important MRI Marker in Patients with Transient Ischemic Attack
Thursday, 14 July 2022   by www.dovepress.com    
Searchterm 'Excitation' was also found in the following services: 
spacer
Radiology  (5) Open this link in a new windowUltrasound  (6) Open this link in a new window
Inversion TimeInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(TI) The time period between the 180° inversion pulse and the 90° excitation pulse in an inversion recovery pulse sequence. The inversion time controls the signal of different tissues and with the change of this parameter also fat and water suppression is attainable.
 
Images, Movies, Sliders:
 Knee MRI Sagittal STIR 002  Open this link in a new window
 Brain MRI Coronal FLAIR 001  Open this link in a new window
 
spacer

• View the DATABASE results for 'Inversion Time' (14).Open this link in a new window

 
Further Reading:
  News & More:
Study identifies new way to predict prognosis for heart failure patients
Tuesday, 10 December 2013   by medicalxpress.com    
MRI Resources 
MRA - Hospitals - Bioinformatics - Shoulder MRI - Shielding - Distributors
 
Longitudinal Magnetization
 
(Mz) The component of the net magnetization vector in the direction of the static magnetic field (z). After RF excitation, this vector returns to its equilibrium value at a rate characterized by the time constant T1.
spacer

• View the DATABASE results for 'Longitudinal Magnetization' (25).Open this link in a new window

Searchterm 'Excitation' was also found in the following services: 
spacer
News  (1)  Forum  (11)  
 
Longitudinal Relaxation
 
Return of longitudinal magnetization to its equilibrium value after excitation;; requires exchange of energy between the nuclear spins and the lattice. See also T1 Time.
spacer

• View the DATABASE results for 'Longitudinal Relaxation' (10).Open this link in a new window

Searchterm 'Excitation' was also found in the following services: 
spacer
Radiology  (5) Open this link in a new windowUltrasound  (6) Open this link in a new window
Longitudinal Relaxation Time
 
The T1 time constant, which determines the rate at which excited protons return to equilibrium within the lattice. The longitudinal relaxation time is a measure of the time taken for spinning protons to realign with the external magnetic field. The magnetization will grow after excitation from zero to a value of about 63% of its final value in a time of T1.

See also T1 Time.
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window
 
spacer

• View the DATABASE results for 'Longitudinal Relaxation Time' (5).Open this link in a new window

MRI Resources 
Pathology - Cochlear Implant - Image Quality - Spectroscopy - Resources - Pregnancy
 
previous      51 - 55 (of 96)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]