Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Flow Effects' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Flow Effects' found in 1 term [] and 15 definitions [], (+ 11 Boolean[] results
previous     21 - 25 (of 27)     next
Result Pages : [1]  [2 3 4]  [5 6]
Searchterm 'Flow Effects' was also found in the following service: 
spacer
News  (1)  
 
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
•
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
•
the possibility to perform a time resolved examination (similarly to conventional angiography);
•
no use of ionizing radiation; paramagnetic agents have a beneficial safety.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Contrast Enhanced MR Venography
    • Magnetic Resonance Angiography MRA
    • Contrast Enhanced MRI
    • Blood Pool Agents
    • Contrast Medium
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
MRI Resources 
Shoulder MRI - RIS - Education - Chemistry - Education pool - MRI Centers
 
Complex Rephasing Integrated with Surface ProbesInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(CRISP) A specific pulse sequence, wherein the application of strategic gradient pulses can compensate for the objectionable spin phase effects of flow motion.
spacer

• View the DATABASE results for 'Complex Rephasing Integrated with Surface Probes' (2).Open this link in a new window

MRI Resources 
Universities - Online Books - Brain MRI - Blood Flow Imaging - Distributors - Jobs pool
 
Intravoxel Incoherent Motion
 
(IVIM) Spins moving in fluids with different velocities and possibly in different directions. This is being found to a small degree in all tissues as a result of capillary perfusion or diffusion. Important velocity changes occur as one moves from the vessel wall towards the center of the vessel. Hence, spins (to a variable degree) have different velocities within a single imaging voxel.
This effect can be measured using special pulse sequences such as in diffusion imaging or diffusion weighed imaging. When the velocity differences are marked, as occurs in larger blood vessels, effects due to IVIM are visible in standard MR images and give rise to flow related dephasing. The effects are more visible when longer echo times are used.
spacer

• View the DATABASE results for 'Intravoxel Incoherent Motion' (3).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
Searchterm 'Flow Effects' was also found in the following service: 
spacer
News  (1)  
 
Multi Echo Data Image CombinationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MEDIC) MEDIC is a heavily T2* weighted spoiled gradient echo sequence with multiple echoes. MEDIC uses a series of identically phase encoded gradient echoes, sampled per line in k-space. Unipolar frequency encoding gradients are used to achieve flow compensation and to avoid off resonance effects. For each echo the magnitude images are reconstructed and postprocessed by using a sum of squares algorithm to improve the signal to noise ratio. The increased receiver bandwidth reduces the T2* effects and impairment of the spatial resolution.
The multi echo data image combination sequence is potentially useful in imaging of cartilage in joints.
spacer

• View the DATABASE results for 'Multi Echo Data Image Combination' (2).Open this link in a new window

MRI Resources 
Veterinary MRI - Brain MRI - Mobile MRI Rental - Examinations - Safety pool - Developers
 
Multiple Overlapping Thin Slab (Slice) Acquisition
 
(MOTSA) This technique combines the best features of 2D time of flight angiography (2D TOF) and 3D TOF MRA. The MOTSA technique consists of multiple 2 cm thick 3D TOF slabs (which minimize saturation effects for through plane flow) combine to provide unlimited coverage similar to multiple 2D TOF slices. High resolution imaging of the carotid arteries is possible when image quality is of greater concern than acquisition time. Images with 1 mm (or less) spatial resolution in all three planes are required. The slabs typically overlap 25-40 to minimize the venetian blind artifact venetian blind artifact due to minimal saturation effects. MOTSA is an useful technique for the evaluation of vertebrobasilar ischemia and aneurysm scanning from the foramen magnum through the circle of Willis.
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer
MRI Resources 
Crystallography - Claustrophobia - Safety Training - Distributors - Jobs - Fluorescence
 
previous      21 - 25 (of 27)     next
Result Pages : [1]  [2 3 4]  [5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]