(T) The SI unit of magnetic flux density.
Definition: 1 T is the field intensity generating 1 newton of force per ampere of current per meter of conductor.
The tesla unit value is defined as a field strength of 1 weber per square meter of area, where 1 weber represents 1 x 108 (100 000 000) flux lines.
One T is equal to 10 000 gauss, the older (CGS) unit.
A field of 1 tesla is quite strong, the Earth's magnetic flux density, at its surface, is about 50 microteslas (μT). The slew rate of MRI devices is measured in mT/m/msec or T/m/sec.
[B0] A conventional symbol for the main magnetic field strength (magnetic flux density or induction) in a MRI system. Although historically used, H0 (units of magnetic field strength, ampere//meter) should be distinguished from the more appropriate B0 [units of magnetic induction, tesla].
In current MR systems it has a constant value over time varying from 0.02 to 4 T. Field strengths of 0.5 T and above are generated with superconductive magnets. High field strengths have a better signal to noise ratio (SNR). The optimal imaging field strength for clinical imaging is between 0.5 and 2.0 T.
(G) An older unit of flux density. The currently preferred SI unit is the tesla (T).
Definition: 1 gauss is defined as 1 line of flux per cm2.
The Earth's magnetic field is approximately one half gauss to one gauss, depending on location. For the large magnetic fields used by MRI, the unit gauss (G) has been replaced by the more practical unit tesla (T), where 1 T = 10 000 G.
(B) Also called magnetic flux density with the SI unit tesla (T) usually denoted by the symbol B. The magnetic induction is the net magnetic effect from an externally applied magnetic field and the resulting magnetization.
The symbol H was used for the magnetic field (measured in amperes per meter (A/m)). However, this distinction is often ignored, and both quantities are often referred to as the magnetic field.
B is proportional to H (B = μH).
(μ is the magnetic permeability (in henries per meter) of the medium)