| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | | | | Searchterm 'Frequency' was also found in the following services: | | | | |
| | |
| |
|
(ESR) Electron spin resonance is a spectroscopic technique to identify paramagnetic substances. This magnetic resonance phenomenon investigates the nature of the bonding within molecules by identifying unpaired electrons, e.g. in free radicals and their interaction with their immediate surroundings. The Larmor frequency are much higher than corresponding NMR frequencies in the same static magnetic field.
Nuclei with an odd number of neutrons and/or protons, because of their spin, react like tiny magnets and can be lined up in an applied magnetic field. Energy applied by alternating radio frequency radiation is absorbed when its frequency coincides with that of precession of the electron magnets. The spectrum of radiation absorbed as the field changes gives information valuable in chemistry, biology, and medicine since over 50 years. | | | | • View the NEWS results for 'Electron Spin Resonance' (1).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Frequency' was also found in the following services: | | | | |
| | |
| |
|
Fat suppression is the process of utilizing specific MRI parameters to remove the deleterious effects of fat from the resulting images , e.g. with STIR, FAT SAT sequences, water selective (PROSET WATS - water only selection, also FATS - fat only selection possible) excitation techniques, or pulse sequences based on the Dixon method.
Spin magnetization can be modulated by using special RF pulses. CHESS or its variations like SPIR, SPAIR ( Spectral Selection Attenuated Inversion Recovery) and FAT SAT use frequency selective excitation pulses, which produce fat saturation.
Fat suppression techniques are nearly used in all body parts and belong to every standard MRI protocol of joints like knee, shoulder, hips, etc.
Image Guidance
Imaging of, e.g. the foot can induce bad fat suppression with SPIR/FAT SAT due to the asymmetric volume of this body part. The volume of the foot alters the magnetic field to a different degree than the smaller volume of the lower leg affecting the protons there. There is only a small band of tissue where the fat protons are precessing at the frequency expected, resulting in frequency selective fat saturation working only in that area. This can be corrected by volume shimming or creating a more symmetrical volume being imaged with water bags.
Even with their longer scan time and motion sensitivity, STIR (short T1/tau inversion recovery) sequences are often the better choice to suppress fat. STIR images are also preferred because of the decreased sensitivity to field inhomogeneities, permitting larger fields of views when compared to fat suppressed images and the ability to image away from the isocenter. See also Knee MRI.
Sequences based on Dixon turbo spin echo ( fast spin echo) can deliver a significant better fat suppression than conventional TSE/FSE imaging.
| | | | | | • View the DATABASE results for 'Fat Suppression' (28).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
(FOV) Defined as the size of the two or three dimensional spatial encoding area of the image. Usually defined in units of mm². The FOV is the square image area that contains the object of interest to be measured. The smaller the FOV, the higher the resolution and the smaller the voxel size but the lower the measured signal.
Useful for decreasing the scantime is a field of view different in the frequency and phase encoding directions ( rectangular field of view - RFOV).
The magnetic field homogeneity decreases as more tissue is imaged (greater FOV). As a result the precessional frequencies change across the imaging volume. That can be a problem for fat suppression imaging. This fat is precessing at the expected frequency only in the center of the imaging volume. E.g. frequency specific fat saturation pulses become less effective when the field of view is increased. It is best to use smaller field of views when applying fat saturation pulses.
Image Guidance
Smaller FOV required higher gradient strength and concludes low signal. Therefore you have to find a compromise between these factors.
The right choice of the field of view is important for MR image quality. When utilizing small field of views and scanning at a distance from the isocenter (more problems with artifacts) it is obviously important to ensure that the region of interest is within the scanning volume.
A smaller FOV in one direction is available with the function rectangular field of view (RFOV).
See also Field Inhomogeneity Artifact. | | | | | | • View the DATABASE results for 'Field of View' (27).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Frequency' was also found in the following services: | | | | |
| | |
| |
|
Filtering deletes components of the signal, high or low frequencies, band-pass, analog or digital. Whatever pattern or algorithms can be defined for data decimation.
Low pass filtering attenuates high frequency data and passes low frequency data. The reconstructed image will look a little blurrier, but nearly similar to the original image. The blurring is caused by the fact that the high spatial frequencies are lost, which contain information about edges in the image.
High pass filtering attenuates low frequencies and passes high frequencies.
Most of the objects and contrast of the original image are lost in the reconstructed image, but the edges are clearly visible because high frequency data has been preserved. | | | | • View the DATABASE results for 'Filtering' (8).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Frequency' was also found in the following services: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'K-Space' (65).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |