Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Frequency Encoding' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Frequency Encoding' found in 2 terms [] and 29 definitions []
1 - 5 (of 31)     next
Result Pages : [1]  [2 3 4 5 6 7]
MRI Resources 
MRI Physics - Implant and Prosthesis - Directories - Image Quality - MRCP - Crystallography
 
Frequency Encoding
 
Encoding the distribution of sources of MR signals along a direction in space with different frequencies. In general, it is necessary to acquire a set of signals with a suitable set of different frequencies in order to reconstruct the distribution of the sources along the encoded direction. In the absence of other position encoding, the Fourier transformation of the resulting signal is a one-dimensional projection profile of the object.
spacer
 
• Share the entry 'Frequency Encoding':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Flow Effects
    • Balanced Sequence
    • Parallel Imaging Technique
    • Aliasing Artifact
    • Phase Encoding
 
Further Reading:
  Basics:
Measuring T1 and T2 Relaxation - Introductory NMR & MRI from Magritek
   by www.azom.com    
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Patient Information - Safety pool - Pathology - Safety Products - MRI Accidents - DICOM
 
Frequency Encoding Gradient
 
(Gf) A frequency encoding gradient produces a magnetic gradient field present during MR signal acquisition to encode signals into different frequencies, depending on their position toward the gradient.
Also called readout gradient.
spacer

• View the DATABASE results for 'Frequency Encoding Gradient' (10).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
  News & More:
BIOPAC Systems, Inc. Announces MRI Gradient Artifact Removal Tools for ECG and EMG Data
Tuesday, 10 February 2009   by www.biospace.com    
Improved shim method based on the minimization of the maximum off-resonance frequency for balanced SSFP
Monday, 1 June 2009   by www.ncbi.nlm.nih.gov    
MRI Resources 
Collections - Directories - Claustrophobia - MRA - Case Studies -
 
BandwidthForum -
related threads
 
(BW) Bandwidth is a measure of frequency range, the range between the highest and lowest frequency allowed in the signal. For analog signals, which can be mathematically viewed as a function of time, bandwidth is the width, measured in Hertz of a frequency range in which the signal's Fourier transform is nonzero.
The receiver (or acquisition) bandwidth (rBW) is the range of frequencies accepted by the receiver to sample the MR signal. The receiver bandwidth is changeable (see also acronyms for 'bandwidth' from different manufacturers) and has a direct relationship to the signal to noise ratio (SNR) (SNR = 1/squareroot (rBW). The bandwidth depends on the readout (or frequency encoding) gradient strength and the data sampling rate (or dwell time).
Bandwidth is defined by BW = Sampling Rate/Number of Samples.
A smaller bandwidth improves SNR, but can cause spatial distortions, also increases the chemical shift. A larger bandwidth reduces SNR (more noise from the outskirts of the spectrum), but allows faster imaging.
The transmit bandwidth refers to the RF excitation pulse required for slice selection in a pulse sequence. The slice thickness is proportional to the bandwidth of the RF pulse (and inversely proportional to the applied gradient strength). Lowering the pulse bandwidth can reduce the slice thickness.
mri safety guidance
Image Guidance
A higher bandwidth is used for the reduction of chemical shift artifacts (lower bandwidth - more chemical shift - longer dwell time - but better signal to noise ratio). Narrow receive bandwidths accentuate this water fat shift by assigning a smaller number of frequencies across the MRI image. This effect is much more significant on higher field strengths. At 1.5 T, fat and water precess 220 Hz apart, which results in a higher shift than in Low Field MRI.
Lower bandwidth (measured in Hz) = higher water fat shift (measured in pixel shift).

See also Aliasing, Aliasing Artifact, Frequency Encoding, and Chemical Shift Artifact.
spacer

• View the DATABASE results for 'Bandwidth' (19).Open this link in a new window

 
Further Reading:
  Basics:
Bandwidth
   by en.wikipedia.org    
  News & More:
Automated Quality Assurance for Magnetic Resonance Image with Extensions to Diffusion Tensor Imaging(.pdf)
   by scholar.lib.vt.edu    
A Real-Time Navigator Approach to Compensating for Motion Artifacts in Coronary Magnetic Resonance Angiography
   by www.cs.nyu.edu    
MRI Resources 
Research Labs - Image Quality - Service and Support - Brain MRI - Software - Devices
 
Gradient Recalled Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The gradient recalled echo MRI sequence generates gradient echoes as a consequence of echo refocusing. The initial slice selective RF pulse applied to the tissue is less than 90° (typically rotation angles are between 10° and 90°). Immediately after this RF pulse, the spins begin to dephase.
Instead of a refocusing 180° RF pulse, reversing the gradient polarity produces a gradient echo. A negative phase encoding gradient and a dephasing frequency encoding gradient are used simultaneous. The switch on of the frequency encoding gradient produces an echo caused by refocusing of the dephasing, which is caused by the dephasing gradient.
TR and flip angle together control the T1, and TE control T2* weighting.
spacer

• View the DATABASE results for 'Gradient Recalled Echo Sequence' (7).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI Resources 
Claustrophobia - Blood Flow Imaging - Pacemaker - Safety Products - Fluorescence - Anatomy
 
Readout Gradient
 
Magnetic field gradient applied during the period when the receiver components are on. The application of this gradient, which is active during the period when the echo is being formed, results in the frequency encoding of the object being imaged.
Also called frequency encoding gradient.
spacer

• View the DATABASE results for 'Readout Gradient' (9).Open this link in a new window

 
Further Reading:
  News & More:
Evaluation of Absorbed Dose by MRI Read-Out
Saturday, 18 November 2017   by www.jstage.jst.go.jp    
MRI Resources 
Online Books - Pathology - Equipment - Case Studies - Raman Spectroscopy - Intraoperative MRI
 
     1 - 5 (of 31)     next
Result Pages : [1]  [2 3 4 5 6 7]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]