Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gradient' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient' found in 59 terms [] and 252 definitions []
previous     56 - 60 (of 311)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12]  [13 14 15 16 17 18 19 20 ... ]
Searchterm 'Gradient' was also found in the following services: 
spacer
News  (6)  Resources  (7)  Forum  (35)  
 
Multiplanar Gradient Recalled Acquisition in the Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MPGR) Multiplanar gradient recalled acquisition in the steady state is a term for a fast gradient echo sequence with slice selective RF pulses.

See Gradient Recalled Echo Sequence and Gradient Echo Sequence.
spacer
Searchterm 'Gradient' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Radio Frequency Spoiled Steady State Acquisition Rewound Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(RSSARGE) A sequence with spoiled gradient echoes.
See Spoiled Gradient Echo Sequence.
spacer

• View the DATABASE results for 'Radio Frequency Spoiled Steady State Acquisition Rewound Gradient Echo' (2).Open this link in a new window

MRI Resources 
MRI Training Courses - Liver Imaging - Stimulator pool - Societies - Collections - Pacemaker
 
Driven Equilibrium Fast Gradient Recalled Acquisition in the Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DE FGR) A gradient echo sequence using a pulse, which sensitizes the sequence to variations in T2, rather than waiting for T1 relaxation.
See Driven Equilibrium, Gradient Recalled Echo Sequence and Steady State Free Precession.
spacer
Searchterm 'Gradient' was also found in the following services: 
spacer
News  (6)  Resources  (7)  Forum  (35)  
 
Inversion Recovery Fast Gradient Recalled Acquisition in the Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
spacer
Searchterm 'Gradient' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Echo Planar ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Echo Planar Imaging Timing Diagram (EPI) Echo planar imaging is one of the early magnetic resonance imaging sequences (also known as Intascan), used in applications like diffusion, perfusion, and functional magnetic resonance imaging. Other sequences acquire one k-space line at each phase encoding step. When the echo planar imaging acquisition strategy is used, the complete image is formed from a single data sample (all k-space lines are measured in one repetition time) of a gradient echo or spin echo sequence (see single shot technique) with an acquisition time of about 20 to 100 ms. The pulse sequence timing diagram illustrates an echo planar imaging sequence from spin echo type with eight echo train pulses. (See also Pulse Sequence Timing Diagram, for a description of the components.)
In case of a gradient echo based EPI sequence the initial part is very similar to a standard gradient echo sequence. By periodically fast reversing the readout or frequency encoding gradient, a train of echoes is generated.
EPI requires higher performance from the MRI scanner like much larger gradient amplitudes. The scan time is dependent on the spatial resolution required, the strength of the applied gradient fields and the time the machine needs to ramp the gradients.
In EPI, there is water fat shift in the phase encoding direction due to phase accumulations. To minimize water fat shift (WFS) in the phase direction fat suppression and a wide bandwidth (BW) are selected. On a typical EPI sequence, there is virtually no time at all for the flat top of the gradient waveform. The problem is solved by "ramp sampling" through most of the rise and fall time to improve image resolution.
The benefits of the fast imaging time are not without cost. EPI is relatively demanding on the scanner hardware, in particular on gradient strengths, gradient switching times, and receiver bandwidth. In addition, EPI is extremely sensitive to image artifacts and distortions.
spacer

• View the DATABASE results for 'Echo Planar Imaging' (19).Open this link in a new window


• View the NEWS results for 'Echo Planar Imaging' (1).Open this link in a new window.
 
Further Reading:
  Basics:
New Imaging Method Makes Brain Scans 7 Times Faster
Sunday, 9 January 2011   by www.dailytech.com    
MRI Resources 
MRI Technician and Technologist Jobs - Pathology - Lung Imaging - MRCP - Brain MRI - Movies
 
previous      56 - 60 (of 311)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12]  [13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]