Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gradient Pulse' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient Pulse' found in 3 terms [] and 31 definitions []
previous     31 - 34 (of 34)     
Result Pages : [1]  [2 3 4 5 6 7]
Searchterm 'Gradient Pulse' was also found in the following services: 
spacer
News  (3)  Resources  (1)  Forum  (1)  
 
Spin Warp Imaging
 
A form of Fourier transformation imaging in which phase encoding gradient pulses are applied for a constant duration but with varying amplitude. The spin warp method, as other Fourier imaging techniques, is relatively tolerant of inhomogeneities in the magnetic fields.
spacer
MRI Resources 
Colonography - Service and Support - Health - Breast MRI - Patient Information - Pacemaker
 
Steady State Free PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence in which a non-zero steady state develops for both components of magnetization (transverse and longitudinal) and also a condition where the TR is shorter than the T1 and T2 times of the tissue. If the RF pulses are close enough together, the MR signal will never completely decay, implying that the spins in the transverse plane never completely dephase. The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, then the flip angle for steady state should be 45-60°.
Steady state free precession is also a method of MR excitation in which strings of RF pulses are applied rapidly and repeatedly with interpulse intervals short compared to both T1 and T2. Alternating the phases of the RF pulses by 180° can be useful. The signal reforms as an echo immediately before each RF pulse; immediately after the RF pulse there is additional signal from the FID produced by the pulse.
The strength of the FID will depend on the time between pulses (TR), the tissue and the flip angle of the pulse; the strength of the echo will additionally depend on the T2 of the tissue. With the use of appropriate dephasing gradients, the signal can be observed as a frequency-encoded gradient echo either shortly before the RF pulse or after it; the signal immediately before the RF pulse will be more highly T2 weighted. The signal immediately after the RF pulse (in a rapid series of RF pulses) will depend on T2 as well as T1, unless measures are taken to destroy signal refocusing and prevent the development of steady state free precession.
To avoid setting up a state of SSFP when using rapidly repeated excitation RF pulses, it may be necessary to spoil the phase coherence between excitations, e.g. with varying phase shifts or timing of the exciting RF pulses or varying spoiler gradient pulses between the excitations.
Steady state free precession imaging methods are quite sensitive to the resonant frequency of the material. Fluctuating equilibrium MR (see also FIESTA and DRIVE)and linear combination SSFP actually use this sensitivity for fat suppression. Fat saturated SSFP (FS-SSFP) use a more complex fat suppression scheme than FEMR or LCSSFP, but has a 40% lower scan time.
A new family of steady state free precession sequences use a balanced gradient, a gradient waveform, which will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
This sequences include, e.g. Balanced Fast Field Echo - bFFE, Balanced Turbo Field Echo - bTFE, Fast Imaging with Steady Precession - TrueFISP and Balanced SARGE - BASG.

See also FIESTA.
spacer

• View the DATABASE results for 'Steady State Free Precession' (20).Open this link in a new window

 
Further Reading:
  News & More:
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
Knee MRI - Breast Implant - MR Guided Interventions - MRI Technician and Technologist Career - Open Directory Project - IR
 
Twister Gradient
 
A gradient pulse designed to dephase low spatial frequency components in an image. The simplest such design is to choose the gradient strength so that a linear phase change of -p to p is generated across the image.
spacer
Searchterm 'Gradient Pulse' was also found in the following services: 
spacer
News  (3)  Resources  (1)  Forum  (1)  
 
Velocity Encoding
 
(VENC) A specialized technique used for encoding flow-velocities.
The velocity encoding value is given by:
VENC = pi / gamma DELTA M1.
Gamma is the gyromagnetic ratio, and DELTA M1 is the gradient moment and is proportional to the area of the flow encoding gradient waveform.

See also Phase Contrast Sequence, Phase Contrast Angiography, and Bipolar Gradient Pulse.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Velocity Encoding' (2).Open this link in a new window

 
Further Reading:
  Basics:
Non-invasively Measuring Blood Flow Using Magnetic Resonance Imaging - NOVA™ Now Available In Europe
Wednesday, 1 October 2008   by www.medicalnewstoday.com    
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI Resources 
Mass Spectrometry - Devices - IR - Diffusion Weighted Imaging - Stimulator pool - Guidance
 
previous      31 - 34 (of 34)     
Result Pages : [1]  [2 3 4 5 6 7]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]