| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Lung Imaging' found in 1 term [] and 6 definitions [], (+ 2 Boolean[] results
| 1 - 5 (of 9) nextResult Pages : [1] [2] | | | | Searchterm 'Lung Imaging' was also found in the following services: | | | | |
| | |
Lung Imaging | |
| |
|
| | | | | | | | | • Share the entry 'Lung Imaging': | | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
Chest MRI a viable alternative to chest CT in COVID-19 pneumonia follow-up Monday, 21 September 2020 by www.healthimaging.com | | |
CT Imaging Features of 2019 Novel Corona virus (2019-nCoV) Tuesday, 4 February 2020 by pubs.rsna.org | | |
Polarean Imaging Phase III Trial Results Point to Potential Improvements in Lung Imaging Wednesday, 29 January 2020 by www.diagnosticimaging.com | | |
Low Power MRI Helps Image Lungs, Brings Costs Down Thursday, 10 October 2019 by www.medgadget.com | | |
Chest MRI Using Multivane-XD, a Novel T2-Weighted Free Breathing MR Sequence Thursday, 11 July 2019 by www.sciencedirect.co | | |
Researchers Review Importance of Non-Invasive Imaging in Diagnosis and Management of PAH Wednesday, 11 March 2015 by lungdiseasenews.com | | |
New MRI Approach Reveals Bronchiectasis' Key Features Within the Lung Thursday, 13 November 2014 by lungdiseasenews.com | | |
MRI techniques improve pulmonary embolism detection Monday, 19 March 2012 by medicalxpress.com |
|
News & More:
| |
| |
| | | Searchterm 'Lung Imaging' was also found in the following service: | | | | |
| | |
| |
|
Inert hyperpolarized gases are under development for imaging air spaces, including those in the lungs. Because they mostly contain air and water, lungs are difficult organs to image.
These ventilation agents (gases) have potential in lung imaging and are currently used in studies of the pulmonary ventilation:
•
aerosolized gadolinium-DTPA
•
hyperpolarized gases (xenon-129, helium-3)
Specific isotopes of inert gases can be hyperpolarized. Hyperpolarized is a state in which almost all of the atoms nuclei are spinning in the same direction. Once the nuclei in the isotope 3He have been hyperpolarized using a laser, they remain in this state for several days.
The inert, hyperpolarized gas can then be used in a lung imaging study, where the high concentration of polarized nuclei provides a sharp contrast in MRI. The technique is already being developed with a view to commercialization by Magnetic Imaging Technologies in Durham, North Carolina. According to the company, existing MRI equipment can be used with a few minor modifications, along with a gas polarizer. The technique could provide early detection and monitoring of pulmonary disease.
Hyperpolarized 129Xe can also be used as a magnetic resonance tracer because of its MR-enhanced sensitivity combined with its high solubility.
This isotope differs from 3He in that it can dissolve in the blood. Strong enhancement of the nuclear spin polarization of xenon in the gas phase can be achieved by optical pumping of rubidium and subsequent spin-exchange with the xenon nuclei.
This technique can increase the magnetic resonance signal of xenon by five orders of magnitude, thus allowing NMR detection of xenon in very low concentration. MR spectroscopy and imaging of optically polarized xenon shows considerable potential for medical applications (see also back projection imaging).
Nycomed Amersham anticipated the market for inert gases in pulmonary imaging. The company obtained an exclusive license for the use of helium (He) and xenon (Xe) as MRI contrast agents. Currently, the US FDA has not yet approved the commercial distribution of inert gas imaging equipment, because the technique is still undergoing trials. | | | | • View the DATABASE results for 'Ventilation Agents' (3).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
This imaging technique is probably the earliest, but rarely used today. Most of today's imaging techniques are based on the Fourier transform, and fill the Cartesian grid of points in k-space line by line by a sequence of applied gradients. Back projection imaging performs a radial filling of the k-space by a one dimensional field gradient, applied at different angles. Back projection imaging is still in use in laser polarized noble gas imaging
(see ventilation agents and lung imaging). | | | | • View the DATABASE results for 'Back Projection Imaging' (3).
| | | | Further Reading: | Basics:
|
|
| |
| | | Searchterm 'Lung Imaging' was also found in the following services: | | | | |
| | |
| |
|
(CAD) 'Computer aided detection' or 'computer assisted diagnosis' systems are tools to improve the efficiency and workflow in medical imaging procedures.
The aim of CAD is to increase the diagnostic accuracy of screening
procedures by using a computer system to locate abnormalities, improve
image management, correct patient movement and assist the radiologists in the interpretation and analysis of data-intensive studies.
Typical applications include the tumor detection in mammography, breast MRI, colonography, and lung imaging. Newer applications like prostate MRI are under investigation. See also MR Guided Interventions, Breast MRI and Hybrid Imaging. | | | | • View the DATABASE results for 'Computer Aided Detection' (3).
| | | • View the NEWS results for 'Computer Aided Detection' (7).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Lung Imaging' was also found in the following service: | | | | |
| | |
| |
|
Contrast enhanced MRI is a commonly used procedure in magnetic resonance imaging. The need to more accurately characterize different types of lesions and to detect all malignant lesions is the main reason for the use of intravenous contrast agents.
Some methods are available to improve the contrast of different tissues. The focus of dynamic contrast enhanced MRI (DCE-MRI) is on contrast kinetics with demands for spatial resolution dependent on the application. DCE- MR imaging is used for diagnosis of cancer (see also liver imaging, abdominal imaging, breast MRI, dynamic scanning) as well as for diagnosis of cardiac infarction (see perfusion imaging, cardiac MRI). Quantitative DCE-MRI requires special data acquisition techniques and analysis software.
Contrast enhanced magnetic resonance angiography (CE-MRA) allows the visualization of vessels and the temporal resolution provides a separation of arteries and veins. These methods share the need for acquisition methods with high temporal and spatial resolution.
Double contrast administration (combined contrast enhanced (CCE) MRI) uses two contrast agents with complementary mechanisms e.g., superparamagnetic iron oxide to darken the background liver and gadolinium to brighten the vessels. A variety of different categories of contrast agents are currently available for clinical use.
Reasons for the use of contrast agents in MRI scans are:
•
Relaxation characteristics of normal and pathologic tissues are not always different enough to produce obvious differences in signal intensity.
•
Pathology that is sometimes occult on unenhanced images becomes obvious in the presence of contrast.
•
Enhancement significantly increases MRI sensitivity.
•
In addition to improving delineation between normal and abnormal tissues, the pattern of contrast enhancement can improve diagnostic specificity by facilitating characterization of the lesion(s) in question.
•
Contrast can yield physiologic and functional information in addition to lesion delineation.
Common Indications:
Brain MRI : Preoperative/pretreatment evaluation and postoperative evaluation of brain tumor therapy, CNS infections, noninfectious inflammatory disease and meningeal disease.
Spine MRI : Infection/inflammatory disease, primary tumors, drop metastases, initial evaluation of syrinx, postoperative evaluation of the lumbar spine: disk vs. scar.
Breast MRI : Detection of breast cancer in case of dense breasts, implants, malignant lymph nodes, or scarring after treatment for breast cancer, diagnosis of a suspicious breast lesion in order to avoid biopsy.
For Ultrasound Imaging (USI) see Contrast Enhanced Ultrasound at Medical-Ultrasound-Imaging.com.
See also Blood Pool Agents, Myocardial Late Enhancement, Cardiovascular Imaging, Contrast Enhanced MR Venography, Contrast Resolution, Dynamic Scanning, Lung Imaging, Hepatobiliary Contrast Agents, Contrast Medium and MRI Guided Biopsy. | | | | | | | | | | | • View the DATABASE results for 'Contrast Enhanced MRI' (14).
| | | • View the NEWS results for 'Contrast Enhanced MRI' (8).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging Tuesday, 27 September 2022 by www.pharmacytimes.com | | |
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging Thursday, 6 August 2020 by www.eurekalert.org | | |
Artificial Intelligence Processes Provide Solutions to Gadolinium Retention Concerns Thursday, 30 January 2020 by www.itnonline.com | | |
Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis Tuesday, 12 March 2019 by pubs.rsna.org | | |
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE Tuesday, 7 February 2017 by www.kjronline.org | | |
Novel Imaging Technique Improves Prostate Cancer Detection Tuesday, 6 January 2015 by health.ucsd.edu | | |
New oxygen-enhanced MRI scan 'helps identify most dangerous tumours' Thursday, 10 December 2015 by www.dailymail.co.uk | | |
All-organic MRI Contrast Agent Tested In Mice Monday, 24 September 2012 by cen.acs.org | | |
A groundbreaking new graphene-based MRI contrast agent Friday, 8 June 2012 by www.nanowerk.com |
|
| |
| | | | |
| | 1 - 5 (of 9) nextResult Pages : [1] [2] |
| |
|
| |
| Look Ups |
| |