| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'MR Compatible' found in 0 term [] and 4 definitions [], (+ 9 Boolean[] results
| 1 - 5 (of 13) nextResult Pages : [1] [2 3] | | | | Searchterm 'MR Compatible' was also found in the following services: | | | | |
| | |
| |
|
This line specifies the perimeter around a MR scanner within which the static magnetic fields are higher than five gauss. Five gauss and below are considered 'safe' levels of static magnetic field exposure for the general public.
Portable devices requiring a separation distance between the device and the MR magnet, should not be considered 'MR Safe', ' MR Compatible', or intended for use in the MR environment. Typically the 5 gauss line is the only location where the static magnetic field strength is specified around a MR scanner. Therefore, labeling specifying a separation distance between the MR magnet and the device to ensure safe or proper operation of the device should be avoided.
See also the related poll result: ' In 2010 your scanner will probably work with a field strength of' | | | | • For this and other aspects of MRI safety see our InfoSheet about MRI Safety. | | | • Patient-related information is collected in our MRI Patient Information.
| | | | • Share the entry '5 Gauss Line': | | | | | | | | Further Reading: | News & More:
|
|
| |
| | | MRI Safety Resources | | | | |
| | | |
| |
|
If a device is to be labeled MR Safe, the following information should be provided:
•
Data demonstrating that when the device is introduced or used in the MRI environment (i.e. the MRI scan room) it does not pose an increased safety risk to the patient or other personnel,
•
a scientifically-based rationale for why data are not necessary to prove the safety of the device in the MR environment (for example, a passive device made entirely of a polymer known to be nonreactive in strong magnetic fields).
If a device is to be labeled MR Compatible, the following information should be provided:
•
Data demonstrating that when the device is introduced or used in the MRI environment, it is MR safe that it performs its intended function without performance degradation, and that it does not adversely affect the function of the MRI scanner (e.g. no significant image artifacts or noise). Any image artifact or noise due to the medical device should be quantified (e.g., % volume affected, signal to noise ratio),
•
a scientifically-based rationale for why data are not necessary to prove the compatibility of the device in the MRI environment.
Test Conditions:
The static magnetic field strength ( Gauss (G) or Tesla (T)) to which the device was tested and demonstrated to be MRI 'safe', 'compatible', or 'intended for use in' should be related to typical machine ratings (e.g. 0.5 T, 1.5 T, 2.0 T, and shielded or unshielded magnet, etc).
The same conditions should be used for the spatial gradient ( field strength per unit distance (i.e., G/cm)) in which the device was tested and demonstrated to be 'safe', 'compatible', or 'intended for use in'.
Also the RF transmitter power used during testing of the device, should be related to this typical machine ratings. | | | | • View the DATABASE results for 'MR Compatibility' (4).
| | | • View the NEWS results for 'MR Compatibility' (2).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
It is important to remember when working around a superconducting magnet that the magnetic field is always on. Under usual working conditions the field is never turned off. Attention must be paid to keep all ferromagnetic items at an adequate distance from the magnet. Ferromagnetic objects which came accidentally under the influence of these strong magnets can injure or kill individuals in or nearby the magnet, or can seriously damage every hardware, the magnet itself, the cooling system, etc..
See MRI resources Accidents.
The doors leading to a magnet room should be closed at all times except when entering or exiting the room. Every person working in or entering the magnet room or adjacent rooms with a magnetic field has to be instructed about the dangers. This should include the patient, intensive-care staff, and maintenance-, service- and cleaning personnel, etc..
The 5 Gauss limit defines the 'safe' level of static magnetic field exposure. The value of the absorbed dose is fixed by the authorities to avoid heating of the patient's tissue and is defined by the specific absorption rate.
Leads or wires that are used in the magnet bore during imaging procedures, should not form large-radius wire loops. Leg-to-leg and leg-to-arm skin contact should be prevented in order to avoid the risk of burning due to the generation of high current loops if the legs or arms are allowed to touch. The patient's skin should not be in contact with the inner bore of the magnet.
The outflow from cryogens like liquid helium is improbable during normal operation and not a real danger for patients.
The safety of MRI contrast agents is tested in drug trials and they have a high compatibility with very few side effects. The variations of the side effects and possible contraindications are similar to X-ray contrast medium, but very rare. In general, an adverse reaction increases with the quantity of the MRI contrast medium and also with the osmolarity of the compound.
See also 5 Gauss Fringe Field, 5 Gauss Line, Cardiac Risks, Cardiac Stent, dB/dt, Legal Requirements, Low Field MRI, Magnetohydrodynamic Effect, MR Compatibility, MR Guided Interventions, Claustrophobia, MRI Risks and Shielding. | | | | | | | | | • View the DATABASE results for 'MRI Safety' (42).
| | | • View the NEWS results for 'MRI Safety' (13).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'MR Compatible' was also found in the following services: | | | | |
| | |
| |
|
Image Guidance
Take care to use only MR compatible (special shielded) devices.
See also MR Compatibility. | | | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
From GE Healthcare;
The Signa SP 0.5T™ is an open MRI magnet that is designed for use in interventional radiology and intra-operative imaging. The vertical gap configuration increases patient positioning options, improves patient observation, and allows continuous access to the patient during imaging.
The magnet enclosure also incorporates an intercom, patient observation video camera, laser patient alignment lights, and task lighting in the imaging volume.
Device Information and Specification CLINICAL APPLICATION Whole body Integrated transmit and receive body coil; optional rotational body coil, head; other coils optional; open architecture makes system compatible with a wide selection of coilsarray Standard: SE, IR, 2D/3D GRE and SPGR, 2D/3D TOF, 2D/3D FSE, 2D/3D FGRE and FSPGR, SSFP, FLAIR, EPI, optional: 2D/3D Fiesta, true chem sat, fat/water separation, single shot diffusion EPI IMAGING MODES Localizer, single slice, multislice, volume, fast, POMP, multi slab, cine, slice and frequency zip, extended dynamic range, tailored RF TR 1.3 to 12000 msec in increments of 1 msec TE 0.4 to 2000 msec in increments of 1 msec 2D: 1.4mm - 20mm 3D: 0.2mm - 20mm POWER REQUIREMENTS 200 - 480, 3-phase | | | | • View the DATABASE results for 'Signa SP 0.5T™ Open Configuration' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | | |
| | 1 - 5 (of 13) nextResult Pages : [1] [2 3] |
| |
|
| |
| Look Ups |
| |