| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | | | | Searchterm 'MRI' was also found in the following services: | | | | |
| | |
| |
|
Molecular imaging agents may be useful in bimodal imaging - fluorescence and MRI.
Bimodal imaging of PBR expressing cells has been possible with Ln-PK-11195, a new imaging agent for the further study of mitochondrial function and its relationship to cancer cell proliferation.
By preparing cocktails of both the Gd3+ and Eu3+ or Tb3+ complexes, it will be possible to obtain non-invasive anatomic-scale images by MRI and perform microscopic-scale imaging by fluorescence on the same cell or tissue.
New agents will be created, these include a long circulating bimetallic with enhanced relaxivity for MRI. In-vitro and in-vivo studies will show the safety and efficacy of these molecular imaging agents. | | | | | |
| | | Searchterm 'MRI' was also found in the following services: | | | | |
| | |
| |
|
From ONI Medical Systems, Inc.;
MSK-Extreme™ MRI system is a dedicated high field extremity imaging device, designed to provide orthopedic surgeons and other physicians with detailed diagnostic images of the foot, ankle, knee, hand, wrist and elbow, all with the clinical confidence and advantages derived from high field, whole body MRI units. The light weight (less than 650 kg) of the OrthOne System performs rapid patient studies, is easy to operate, has a patient friendly open environment and can be installed in a practice office or hospital, all at a cost similar to a low field extremity machine.
New features include a more powerful operating system that offers increased scan speed as well as a 160-mm knee coil with higher signal to noise ratio, and the option of a CD burner.
Device Information and Specification 16 cm knee, 18 cm lower extremity;; 12.3 cm upper extremity, additional high resolution v-SPEC Coils: 80 mm, 100 mm, or 145 mm. SE, FSE, GE2D, GE3D, Inversion recovery (IR), Driven Equilibrium, Fat Saturation (FS), STIR, MT, PD, Flow Compensation (FC), RF spoiling, MTE, No Phase Wrap (NPW) IMAGING MODES Scout, single, multislice, volume 2D less than 200 msec/image X/Y: 64-512; 2 pixel steps 4,096 grey lvls; 256 lvls in 3D POWER REQUIREMENTS 115VAC, 1phase, 20A; 208VAC, 3 phase, 30A COOLING SYSTEM TYPE LHe with 2 stage cold head 1.25m radial x 1.8m axial
| | | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
( MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography ( MRA):
•
Detection of aneurysms and dissections
•
Evaluation of the vessel anatomy, including variants
•
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)
Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.
See also Magnetic Resonance Imaging MRI. | | | | | | | | | | | • View the DATABASE results for 'Magnetic Resonance Angiography MRA' (3).
| | | • View the NEWS results for 'Magnetic Resonance Angiography MRA' (10).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'MRI' was also found in the following services: | | | | |
| | |
| |
|
(MSI) The combination of biomagnetic field detection and MR imaging into a merged data set. Most applications of MSI involve the combined use of MRI and measurement of magnetic fields created by electric currents in the brain, so-called magnetoencephalography MEG.
MEG allows calculation of the source of the measured biomagnetic fields, and thereby localization of many regional brain functions, such as mapping of the sensorimotor, auditory and visual cortex and also localization of epileptogenic foci.
The MEG coordinate system is defined by anatomical landmarks, which are easily identified also with MRI, making it possible to align the 3D MEG data with the 3D MR image data. The resulting magnetic source images show the spatial relationships between the functional area provided by MEG and the neighboring anatomy and pathology, both provided by MRI.
Cardiac applications of MSI are also being explored. The electric currents in the myocardium create extrathoracic magnetic fields and the source of these fields may be calculated by the same principles as those used in MEG. Possible cardiac applications include mapping of arrhythmogenic sites prior to ablation therapy. | | | | • View the DATABASE results for 'Magnetic Source Imaging' (2).
| | | • View the NEWS results for 'Magnetic Source Imaging' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'MRI' was also found in the following services: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'Mangafodipir Trisodium' (6).
| | | • View the NEWS results for 'Mangafodipir Trisodium' (1).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |